
Imperative Programmierung

Prof. Dr.-Ing. Tenshi Hara
tenshi.hara@ba-sachsen.de

7
Version 2023a

Imperative Programmierung

Felder und Zeiger

7-2Prof. Dr.-Ing. Tenshi Hara Imperative Programmierung
Felder und Zeiger

ANSI-C

AUFBAU DER LEHRVERANSTALTUNG

Projektverwaltung

Werkzeuge make und
makefile

Fehlerbe-
handlung

theoretische
Grundlagen

und
Darstellungs-

formen

Strukturelemente

Funktionen

„Call by
Value“ und

„Call by
Reference“

Rekursion
und

Sonder-
funktionen

Prä-
compiler

und
Makros

Datenstrukturen

Felder
(Arrays)

Zeiger
(Pointer)

Strukturen
und Datei-

Arbeit

dynamische
Daten-

strukturen

Compiler

Felder Zeiger

7-3Prof. Dr.-Ing. Tenshi Hara Imperative Programmierung
Felder und Zeiger

FELD (VEKTOR, ARRAY)

• Aneinanderreihung von Elementen gleichen Typs
(elementare Datentypen, Strukturen, selbst definierte Datentypen, ...)

• Feld-Elemente stehen im Speicher lückenlos hintereinander
(mit aufsteigenden Adressen)

• Zugriff auf einzelne Elemente eines Feldes erfolgt über Index
(beginnt in C bei 0): <Variable> "[" <Integer Number> "]"

• keine Sprachelemente in C zur Verarbeitung von kompletten Feldern
(eckige Klammern sind nur Syntaxelemente für Arbeit mit den Indizes)

• Arbeit mit Feldern erfolgt mit Standardfunktionen oder elementweise

Felder Zeiger

7-4Prof. Dr.-Ing. Tenshi Hara Imperative Programmierung
Felder und Zeiger

ARBEIT MIT FELDERN

• Name des Feldes ist die Anfangsadresse des Feldes, also die Adresse des
ersten Elementes (mit Index 0): feld ≙ &feld[0]

• wird Anfangsadresse des Feldes benötigt (z.B. bei Parametern im
Funktionenaufruf), kann einfach Name des Feldes angegeben werden

• Beispiel: Feld ganzer Zahlen

Index 0 1 2 3 4 5 6 7

Inhalt 12 7 -3 8 -13 0 5 1

Felder Zeiger

7-5Prof. Dr.-Ing. Tenshi Hara Imperative Programmierung
Felder und Zeiger

VEREINBARUNG VON FELDERN UND ZUGRIFF

int feld1[10]; /* Vereinbarung */

// …

hilf= feld1[i]; /* Inhalt des Feldelementes */
/* wird kopiert */

//…

Elementanzahl muss bei Compilierung bekannt sein.

Es kann ein ganzzahliger aber konstanter Ausdruck
angegeben werden.

Ab C99 kann die Anzahl der Feldelemente während
der Laufzeit ermittelt werden, kann aber danach
nicht mehr verändert werden (semidynamisch).

Feldelemente können durch beliebigen ganzzahligen
Ausdruck adressiert werden, auch durch Variablen.

Felder Zeiger

7-6Prof. Dr.-Ing. Tenshi Hara Imperative Programmierung
Felder und Zeiger

FELD-VEREINBARUNG

• Beispiele für Feldvereinbarungen
#define ANZ 10
int feld1[ANZ]; // zufällige Anfangswerte
int feld2[] = { 12, 7, -3, 8, -13, 0, 5, 1 }; // 8 Elemente
float feld3[15];
int k = 8;
double feld4[k]; // nicht bis C90; erst ab C99 erlaubt!

• Länge des Feldes ist mit Vereinbarung festgelegt; kann nachträglich
nicht mehr verändert werden!

• dynamische Speicherverwaltung kann mit den Funktionen malloc,
calloc und free realisiert werden

Felder Zeiger

7-7Prof. Dr.-Ing. Tenshi Hara Imperative Programmierung
Felder und Zeiger

INDIZES

• Zugriff auf die Feldelemente erfolgt über den Index

• Index kann ein beliebiger ganzzahliger Ausdruck sein

• keine Überwachung der Überschreitung von Feldgrenzen
(weder bei Compilierung noch bei Ausführung wird geprüft, ob über die
vereinbarten Grenzen hinaus zugegriffen wird → Speicherschutzproblem)

• Index kann größer sein als Anzahl der Elemente oder auch negativ
(widerspricht nicht den Syntaxregeln)

• Verantwortung für die Arbeit mit Feldindizes liegt beim Programmierer!

Felder Zeiger

7-8Prof. Dr.-Ing. Tenshi Hara Imperative Programmierung
Felder und Zeiger

ZEICHENKETTE (STRING, TEXT)

• Zeichenketten (Texte, Strings) sind in C Felder einzelner Zeichen mit
dem Ende-Kennzeichen \0 (Endlimiter) als letztem Zeichen

• Speicherplatz für das Ende-Kennzeichen muss berücksichtigt werden

• mangels Sprachelementen für Feld-Arbeit muss Verarbeitung von Texten
in C mittels dafür vorgesehener Standardfunktionen (oder in eigenen
Programmstücken mit Schleifen) elementweise erfolgen

Index 0 1 2 3 4 5 6 7

Inhalt D r e s d e n \0

Felder Zeiger

7-9Prof. Dr.-Ing. Tenshi Hara Imperative Programmierung
Felder und Zeiger

VEREINBARUNG VON TEXTEN

char text1[80+1]; /* Vereinbarung */

• binäre Null (\0) entspricht nicht dem Zeichen „0“ (ASCII 48, 0x30, 060)

• bei binärer Null sind alle Bits mit 0 belegt
char zeichen = 0; /* ohne Delimiter und ohne \ */
char zeichen = '\0'; /* mit Delimiter aber mit \ */

• Datentyp char wird in C wie ein ganzzahliger Datentyp behandelt

Anzahl maximal benötigter Einzelzeichen
zzgl. Speicherplatz für die binäre Null

Felder Zeiger

7-10Prof. Dr.-Ing. Tenshi Hara Imperative Programmierung
Felder und Zeiger

Zeiger (Pointer)

7-11Prof. Dr.-Ing. Tenshi Hara Imperative Programmierung
Felder und Zeiger

ZEIGER (POINTER) (1/3)

• Arbeit mit Pointern macht C-Programme effizienter (Arbeit mit Adressen)

• Pointer-Arbeit nur möglich, wenn entsprechende Daten (worauf Pointer
zeigen) vorhanden sind

• Pointer selbst belegen auch Speicherplatz
(so viel, wie zur Speicherung einer Adresse nötig ist)

• Pointer-Typ muss dem Typ dessen, worauf gezeigt wird, entsprechen

• mit Pointern kann gerechnet werden (Zeiger-Arithmetik)

• alles was mit Pointern realisiert werden kann, kann auch mit anderen
Mitteln (Felder, Indizes, …) realisiert werden

Felder Zeiger

7-12Prof. Dr.-Ing. Tenshi Hara Imperative Programmierung
Felder und Zeiger

ZEIGER (POINTER) (2/3)

int *ptrInt; // Vereinbarung eines Zeigers,
// der auf int-Daten zeigt

int feld[10];

// …

ptrInt = feld; /* Pointer erhält Adresse des */
/* Feldes (des 1. Elementes) */

// … /* -- gleichbedeutend mit: */
/* ptrInt = &feld[0]; */

Der Stern bei der Vereinbarung deklariert die
Vereinbarung eines Pointers.

Der Inhalt des Pointers ist zufällig, kann aber bei
der Vereinbarung einen Anfangswert erhalten.

Irgendeine Zuweisung dieser Art muss immer vor
der Arbeit mit Zeigern vorhanden sein.

Felder Zeiger

7-13Prof. Dr.-Ing. Tenshi Hara Imperative Programmierung
Felder und Zeiger

ZEIGER (POINTER) (3/3)

• Beispiele für Pointer-Vereinbarungen
int *ptrInt; // zufälliger Anfangswert

int *ptrFeld[5]; // Feld von fünf Zeigern

char text[80+1]; // String mit maximal 80 Zeichen

char *ptrChar = text; // Anfangsinitialisierung

• Name eines Feldes ist die Adresse auf das erste Element
(wie ein Zeiger auf dieses Element)

• Name eines Feldes darf nicht auf linker Seite einer Zuweisung stehen
(ist nämlich ein konstanter Zeiger)

Felder Zeiger

7-14Prof. Dr.-Ing. Tenshi Hara Imperative Programmierung
Felder und Zeiger

ZEIGER-ARITHMETIK (1/2)

• Zeigervariablen enthalten Adressen, mit denen gerechnet werden kann

zeiger++; bzw. ++zeiger; /* Inkrement */

zeiger--; bzw. --zeiger; /* Dekrement */

• Zeiger verweist auf Element mit der als datentyp-abhängigen Offset von
der Startadresse berechneten Adresse; insbesondere

• bei Inkrement: Adresse des nächsten Elements

• bei Dekrement: Adresse des vorherigen Elements

• Es werden so viele Byte weiter gezählt, wie es dem Typ der
Zeigervariablen entspricht

• Verantwortung liegt beim Programmierer, dass nach allen Operationen
die Zeiger auf gültige Daten zeigen

Felder Zeiger

7-15Prof. Dr.-Ing. Tenshi Hara Imperative Programmierung
Felder und Zeiger

ZEIGER-ARITHMETIK (2/2)

Zeiger + (/* ganzzahliger Ausdruck */)

Zeiger - (/* ganzzahliger Ausdruck */)

→ die ganze Zahl (Auswertung des ganzzahligen Ausdrucks) wird mit der
Anzahl Byte entsprechend des Typs der Zeigervariablen multipliziert

Anzahl = Zeiger1 - Zeiger2;

→ Anzahl der Elemente zwischen den Zeigern, wenn Adresse *Zeiger1
vor Adresse *Zeiger2 liegt (Zeiger1 enthält größere Zahl)

Felder Zeiger

7-16Prof. Dr.-Ing. Tenshi Hara Imperative Programmierung
Felder und Zeiger

SINN VON ZEIGERN

effizientere Arbeit und dynamische Datenstrukturen sind der Hauptgrund
für die Verwendung von Pointern in C

• indirekte Berechnung der Zieladresse:

i++; /* Indexvariable erhöhen */
feld[i] = ...; /* Zugriff auf das Element */

/* interne Berechnung anhand Bytebreite des Datentyps:
==> feld + i * (Anzahl Byte entsprechend Datentyp) */

Anfangsadresse des Feldes berechnete Adresse des Elementes

• Zieladresse mittels Zeiger:

ptrFeld++; /* Zeigervariable erhöhen */

ptrFeld= ...; / Zugriff auf den Inhalt */

→ Zeigervariable enthält bereits nach der Erhöhung die richtige Adresse

Felder Zeiger

	Foliennummer 1
	Foliennummer 2
	Feld (Vektor, Array)
	Arbeit mit Feldern
	Vereinbarung von Feldern und Zugriff
	Feld-Vereinbarung
	Indizes
	Zeichenkette (String, Text)
	Vereinbarung von Texten
	Foliennummer 10
	Zeiger (Pointer) (1/3)
	Zeiger (Pointer) (2/3)
	Zeiger (Pointer) (3/3)
	Zeiger-Arithmetik (1/2)
	Zeiger-Arithmetik (2/2)
	Sinn von Zeigern

