M. BERUFSAKADEMIE SACHSEN
. ”~ STAATLICHE STUDIENAKADEMIE
Version 2023a DRESDEN

UNIVERSITY OF COOPERATIVE EDUCATION

Imperative Programmierung

Felder und Zeiger

Prof. Dr.-Ing. Tenshi Hara
tenshi.hara@ba-sachsen.de

Imperative Programmierung

eeeeee

zzzzzz

[| |)) [[) [[) [)) [
AUFBAU DER LEHRVERANSTALTUNG
ANSI-C
Projektverwaltung
Werkzeuae make und Fehlerbe- Compiler
9 makefile handlung
Datenstrukturen theoretische
_ Grundlagen
A - Zeiger Stru kture_n dynamische und
(Arrays) (POinter) und Datei- Daten- Darste”ungs_
Arbeit strukturen formen
Strukturelemente
»Call by Rekursion Pra-
Funktionen Value" und und compiler
»,Call by Sonder- und
Reference" funktionen Makros

Felder Zeiger

FELD (VEKTOR, ARRAY)

« Aneinanderreihung von Elementen gleichen Typs
(elementare Datentypen, Strukturen, selbst definierte Datentypen, ...)

* Feld-Elemente stehen im Speicher lUckenlos hintereinander
(mit aufsteigenden Adressen)

« Zugriff auf einzelne Elemente eines Feldes erfolgt Uber Index
(beginnt in C bei 0): <Variable> "[" <Integer Number> "]"

« keine Sprachelemente in C zur Verarbeitung von kompletten Feldern
(eckige Klammern sind nur Syntaxelemente flir Arbeit mit den Indizes)

« Arbeit mit Feldern erfolgt mit Standardfunktionen oder elementweise

cccccccccc

ARBEIT MIT FELDERN

« Name des Feldes ist die Anfangsadresse des Feldes, also die Adresse des
ersten Elementes (mit Index 0): feld £ &feld[0]

« wird Anfangsadresse des Feldes bendtigt (z.B. bei Parametern im
Funktionenaufruf), kann einfach Name des Feldes angegeben werden

» Beispiel: Feld ganzer Zahlen

Index 0 1 2 3 4 5 6 7

Inhalt 12 7 -3 8 |-13]| O 5 1

cccccccccc
[| [] [| [| [| [| [| [| [| [| [| [] [| [|

VEREINBARUNG VON FELDERN UND ZUGRIFF

int feld1[10]; /* Vereinbarung */

// Elementanzahl muss bei Compilierung bekannt sein.
Es kann ein ganzzahliger aber konstanter Ausdruck
angegeben werden.

Ab C99 kann die Anzahl der Feldelemente wahrend
der Laufzeit ermittelt werden, kann aber danach
nicht mehr verandert werden (semidynamisch).

hilf= feldl[i]; /* Inhalt des Feldelementes */
/* wird koptert *x/

[/

Feldelemente kdnnen durch beliebigen ganzzahligen
Ausdruck adressiert werden, auch durch Variablen.

zzzzzz

FELD-VEREINBARUNG

» Beispiele fur Feldvereinbarungen

#define ANZ 10
int feld1[ANZ]; // zufallige Anfangswerte
int feld2[]1 ={ 12, 7,-3,8,=-13,0,5,1%; // 8 Elemente

float feld3[15];
int k = 8;
double feld4[kl]; // nicht bis C90; erst ab C99 erlaubt!
» Lange des Feldes ist mit Vereinbarung festgelegt; kann nachtraglich
nicht mehr verandert werden!

« dynamische Speicherverwaltung kann mit den Funktionen malloc,
calloc und free realisiert werden

eeeeeeeeeeee

INDIZES

« Zugriff auf die Feldelemente erfolgt Gber den Index
« Index kann ein beliebiger ganzzahliger Ausdruck sein

« keine Uberwachung der Uberschreitung von Feldgrenzen
(weder bei Compilierung noch bei Ausfihrung wird geprift, ob Uber die
vereinbarten Grenzen hinaus zugegriffen wird — Speicherschutzproblem)

« Index kann groBer sein als Anzahl der Elemente oder auch negativ
(widerspricht nicht den Syntaxregeln)

« Verantwortung fur die Arbeit mit Feldindizes liegt beim Programmierer!

Felder Zeiger

ZEICHENKETTE (STRING, TEXT)

« Zeichenketten (Texte, Strings) sind in C Felder einzelner Zeichen mit
dem Ende-Kennzeichen \0 (Endlimiter) als letztem Zeichen

Index 0 1 2 3 4 5 6 7

Inhalt D r e S d e n \O

« Speicherplatz fur das Ende-Kennzeichen muss berlcksichtigt werden

 mangels Sprachelementen fir Feld-Arbeit muss Verarbeitung von Texten
in C mittels daflir vorgesehener Standardfunktionen (oder in eigenen
Programmesticken mit Schleifen) elementweise erfolgen

eeeeeeeeeeee

VEREINBARUNG VON TEXTEN

char textl1[80+1]; /* Vereinbarung */

Anzahl maximal benotigter Einzelzeichen
zzgl. Speicherplatz fur die binare Null

« binare Null (\0) entspricht nicht dem Zeichen , 0 (ASCII 48, 0x30, 060)

» bei binarer Null sind alle Bits mit 0 belegt

/* ohne Delimiter und ohne \ */

char zetichen ;
'‘"\0'; /* mit Delimiter aber mit \ */

char zeichen

« Datentyp char wird in C wie ein ganzzahliger Datentyp behandelt

M, BERUFSAKADEMIE SACHSEN
& STAATLICHE STUDIENAKADEMIE
DRESDEN

UNIVERSITY OF COOPERATIVE EDUCATION

Zeiger (Pointer)

Felder o Zeiger

ZEIGER (POINTER) (1/3)

« Arbeit mit Pointern macht C-Programme effizienter (Arbeit mit Adressen)

» Pointer-Arbeit nur moglich, wenn entsprechende Daten (worauf Pointer
zeigen) vorhanden sind

» Pointer selbst belegen auch Speicherplatz
(so viel, wie zur Speicherung einer Adresse notig ist)

« Pointer-Typ muss dem Typ dessen, worauf gezeigt wird, entsprechen
« mit Pointern kann gerechnet werden (Zeiger-Arithmetik)

 alles was mit Pointern realisiert werden kann, kann auch mit anderen
Mitteln (Felder, Indizes, ...) realisiert werden

cccccccccccc

ZEIGER (POINTER) (2/3)

int *ptrint; // Vereinbarung eines Zeigers,

// der auf int-Daten zeigt
int feld[10];

Der Stern bei der Vereinbarung deklariert die
Vereinbarung eines Pointers.

Der Inhalt des Pointers ist zufallig, kann aber bei
der Vereinbarung einen Anfangswert erhalten.

/]

ptrInt = feld; /* Pointer erhalt Adresse des */
/* Feldes (des 1. Elementes) */
// /* -- gleichbedeutend mit: x/
/* ptrInt = &feld[0]; */

Irgendeine Zuweisung dieser Art muss immer vor
der Arbeit mit Zeigern vorhanden sein.

cccccccccccc

ZEIGER (POINTER) (3/3)

» Beispiele flr Pointer-Vereinbarungen

int *ptrint; // zufalliger Anfangswert
int *ptrFeld[5]; // Feld von funf Zeigern
char text[80+1]; // String mit maximal 80 Zeichen

char *ptrChar = text; // Anfangsinitialistierung

« Name eines Feldes ist die Adresse auf das erste Element
(wie ein Zeiger auf dieses Element)

« Name eines Feldes darf nicht auf linker Seite einer Zuweisung stehen
(ist namlich ein konstanter Zeiger)

cccccccccccc

ZEIGER-ARITHMETIK (1/2)

« Zeigervariablen enthalten Adressen, mit denen gerechnet werden kann

zelger++; bzw. ++zeiger; /* Inkrement */
zeiger=--; bzw. =--zetiger; /* Dekrement */

« Zeiger verweist auf Element mit der als datentyp-abhdngigen Offset von
der Startadresse berechneten Adresse; insbesondere

 bei Inkrement: Adresse des nachsten Elements

« bei Dekrement: Adresse des vorherigen Elements

« Es werden so viele Byte weiter gezahlt, wie es dem Typ der
Zeigervariablen entspricht

« Verantwortung liegt beim Programmierer, dass nach allen Operationen
die Zeiger auf gulltige Daten zeigen

cccccccccccc

ZEIGER-ARITHMETIK (2/2)

Zeiger + (/* ganzzahliger Ausdruck */)

Zeiger - (/* ganzzahliger Ausdruck */)

— die ganze Zahl (Auswertung des ganzzahligen Ausdrucks) wird mit der
Anzahl Byte entsprechend des Typs der Zeigervariablen multipliziert

Anzahl = Zeilgerl - Zeiger2;

— Anzahl der Elemente zwischen den Zeigern, wenn Adresse *Zeigerl
vor Adresse *Zeiger?2 liegt (Zeigerl enthalt groBere Zahl)

\\\\\\\\\\

SINN VON ZEIGERN

effizientere Arbeit und dynamische Datenstrukturen sind der Hauptgrund
far die Verwendung von Pointern in C

* indirekte Berechnung der Zieladresse:

T++; /* Indexvartiable erhohen */
feld[i] = ...; /* Zugriff auf das Element */

/* interne Berechnung anhand Bytebreite des Datentyps:
==> Fqld + 1 * (Anzahl Byte entsprechend Datentyp) */

Y
Anfangsadresse des Feldes berechnete Adresse des Elementes
« Zieladresse mittels Zeiger:
ptrFeld++; /* Zeilgervariable erhohen */

ptrFeld= ...; / Zugriff auf den Inhalt */

— Zeigervariable enthalt bereits nach der Erh6hung die richtige Adresse

	Foliennummer 1
	Foliennummer 2
	Feld (Vektor, Array)
	Arbeit mit Feldern
	Vereinbarung von Feldern und Zugriff
	Feld-Vereinbarung
	Indizes
	Zeichenkette (String, Text)
	Vereinbarung von Texten
	Foliennummer 10
	Zeiger (Pointer) (1/3)
	Zeiger (Pointer) (2/3)
	Zeiger (Pointer) (3/3)
	Zeiger-Arithmetik (1/2)
	Zeiger-Arithmetik (2/2)
	Sinn von Zeigern

