Web- und App-Programmierung

Deployment und
Software Reviews

Prof. Dr.-Ing. Tenshi Hara
fragen@lern.es

AUFBAU DER LEHRVERANSTALTUNG

Applikationsentwicklung

iie¥lde Entwicklung

ile MApplikatio

Plattform-uUbergr

Kontext g
und
Adaption
Mobile
e Kommuni-
D ‘aa lerte kations- Energie-

Dienste mecha- bewusstsein
nismen

Basistechnologien und Herausforderungen

i//
y

eeeeeeeeee

SPF PATTERN / MONOLITH (1/2)

« monolithische Anwendung (Single Point of Failure)

« i. d. R. Top-Down oder Bottom-Up implementiert
(ggf. mit Black-Box Modulen)

« schnell erzeugt, skaliert gut fur kleine Anwendungen
« ungunstig bei multiplen/spezialisierten Adaptionsstrategien

. 2 Hauptvarianten:
« Client-Server-Koexistenz

» Client-Server-Symbiose

eeeeeeeeee

SPF PATTERN / MONOLITH (2/2)

« Client-Server-Koexistenz
« haufig
« ohne Optimierungen
« Server kann unterschiedliche Clients versorgen

e Client kann unterschiedliche Server verwenden

« Client-Server-Symbiose
« eher selten
* hochgradig optimierte Implementierung

« Server und Client arbeiten integriert (voneinander abhangiqg)

eeeeeeeeee

MICRO SERVICES (1/2)

Grundidee: fur jede Aufgabe gibt es einen eigenen replizierbaren Service

. alle Komponenten erledigen exakt eine Aufgabe
(entsprechend Unix-Philosophie: Do one Thing and do it well)
— Kontextbindung im Sinne des Domain-driven Designs

. alle Komponenten sind austauschbar
« arbeiten gegen definierte Schnittstellen — Obfuskation von Interna

 sind auffindbar und sofort nutzbar — Dienstkomposition

. multiple entkoppelte Instanzen eines Services
« arbeiten parallel — Load Balancing

 behindern sich nicht — Isolation

eeeeeeeeee

MICRO SERVICES (2/2)

. bendtigen i. d. R. Zeitsynchronisierung — Lamport-Ansatz
. Moglichkeit des Distributed Testing Desasters

« Probleme im Sinne des CAP-Theorem; i. d. R. behandelt durch
« Aufweichung der Konsistenz

« NoSQL-DBMS und BASE-Prinzip
(Basically Available, Soft State, Eventual Consistency)

« (sehr) anfallig fur Entwurfsfehler der Entwickler — Frontend Monolith

Deployment

MICRO SERVICES ANTI-PATTERN (1/2)

<
et
o)
c
[®)
=
1
o
c
(O]
)
c
(®)
| -
w

92IAISS-04D1 N

92IAJI9S-01DI

92IAJISS-04DI

92IAI9S-0DIN

92IAJI9S-01DI N

Deployment

MICRO SERVICES ANTI-PATTERN (2/2)

92IAISS

uoIssas Y uiboT

92IAIDS-0.DI

92IAI9S-0.1DI N

92IAISS-04DI

92IAISS-04DI N

92IAI2S-0.DIA

DBMS
(als Session-Manager)

eeeeeeeeee

MICRO SERVICE FRONTEND INTEGRATION (1/6)

. einheitliches Look & Feel
« Grundvoraussetzung fur eine hohe Usability
« Gestaltungsdisziplin, ggf. Corporate Design notwendig
 rein optisch muss alles aus einem Guss zusammengehorig wirken

« unabhangige Deploybarkeit

 Benutzeroberflachen der einzelnen Micro Services mussen
unabhangig voneinander deploybar sein

« im Vorfeld weder Quellcode noch Softwareartefakte zwischen

Services austauschen
— dynamische Integration der GUI zur Laufzeit

. Zustandsbasierte Kommunikation
« Schnittstellen definieren
« Zustandsinformationen (und ggf. Nachrichten) definieren

eeeeeeeeee

MICRO SERVICE FRONTEND INTEGRATION (2/6)

. Technologieunabhangigkeit
 jede einzelne GUI sollte sich technologieunabhangig umsetzen lassen

« Unterstlutzung verschiedener Frameworks (Angular, React, ...)
innerhalb eines Frontends sinnvoll

. Isolation
« GUIs immer voneinander isolieren!
« Drittanbieter-Service (Like-Button, Werbung, ...) in Sandbox einbetten

Wichtigstes Integrationswerkzeug bei Web-Anwendungen: Shell Loading

= egal welcher Service zuerst angesprochen wird:
alle anderen GUI-Komponenten per iframe nachladen und integrieren

= Kommunikation zwischen den Frames mittels JavaScript

MICRO SERVICE FRONTEND INTEGRATION (3/6)

JavaScript-Kommunikation zwischen iframes

// Sender
const iframe =
(<HTMLIFrameElement>document.getElementById("iframeName"));
iframe.contentWindow.postMessage(

{"message": "Hallo Welt!"},

"https://example.com/"
);

// Empfanger

export class Component implements EventListenerObject {
constructor()

window.addEventListener('message’', this);
public handleEvent(event)

if (isTrustedURL(event.origin))
console.log(message received:' + event.data.message);

MICRO SERVICE FRONTEND INTEGRATION (4/6)

€| en
]]]]]]]]]

Zusammenfihren mittels iframe-Bridge

Shell (im Browser)

Shell Component

A

Event Notification

HTTP|

postMessage

Event Notification

Shell Component

HTTP|

postMessage

register register register
HTTP] HTTP] HTTP]
panMpqqagp panMpqqagp panMpqqagp

Micro Service 1 GUI

iframe

Micro Service 2 GUI

iframe

Micro Service 3 GUI

iframe

eeeeeeeeee

MICRO SERVICE FRONTEND INTEGRATION (5/6)

export class IFrameBridge {
private iFrameMap = new Map<string, IFrame>();
public registerIFrame(event) {
const url = event.target.src;
if (isTrustedURL(url))
this. 1FrameMap.set(
url, new IFrame(url, event.target.1id)

);
}
public postMessageToIFrame(url: string, message: any) {
if (this.i1FrameMap.has(url))
this.1FrameMap.get(url).postMessage(message);

eeeeeeeeee

MICRO SERVICE FRONTEND INTEGRATION (6/6)

class IFrame {

private i1d: string;

private url: string;

private htmlIFrameWindow: Window;

constructor(url: string, i1d: string) {
this.url = url;
this.id = id;
this.htmlIFrameWindow = (

<HTMLIFrameElement>document.getElementById(this. i1d)

) .contentWindow;

}

public postMessage(message)
this.htmlIFrameWindow.postMessage(message, this.url);

/]

W

Deployment Software Review

5 PHASEN DES REVIEWS

Ziele, Scope und

Umfang definieren)
Vorgehen definieren
)\
-
« vor Beginn mit Auftraggebenden Stakeholder
. . interviewen
bzw. Verantwortlichen die
. . \.
Zielsetzung und Scope klaren
« gemeinsam festlegen, welchen
zeitlichen Umfang das Review Analysen
haben SO” durchfiihren

« konkretes Vorgehen:
Welche Interviews und Analysen
braucht es zu welchem Zeitpunkt

und mit welcher Beteiligung? Ergebnisse

vorstellen

Deployment Software Review

5 PHASEN DES REVIEWS

Ziele, Scope und
Umfang definieren

Vorgehen definieren

Stakeholder

- Kick-off mit allen Beteiligten: interviewen

Vorgehen erklaren

« erste Gesprache Uber Starken und
Schwachen des Systems

Analysen
« Untersuchungsgegenstand definieren durchfihren

« Architektur, struktureller Aufbau, etc.

eingesetzte Technologien

Implementierung/Quellcode

Betrieb Ergebnisse
vorstellen

Entwicklung/Entwicklungsprozesse

Deployment Software Review

5 PHASEN DES REVIEWS

Ziele, Scope und
Umfang definieren

Vorgehen definieren

Stakeholder
gezielte Interviews mit IntErviewen
den wichtigen Beteiligten
aus den verschiedenen

beteiligten Bereichen

Analysen
durchfiihren

Ergebnisse
vorstellen

Deployment

5 PHASEN DES REVIEWS

Ziele, Scope und

Umfang definieren

Vorgehen definieren

~

J

Analyseschritte nach Bedarf:

« gezielte Suche nach
Problemen und Risiken
bestimmter Kategorien

« ggf. im abwechselnden
Tandem mit Phase 3

= Die Ergebnisse von
Interviews kdnnen
bestimmte Analysen
notwendig machen
und umgekehrt

~

e

Stakeholder
interviewen

Analysen
durchfihren

Ergebnisse
vorstellen

Deployment Software Review

5 PHASEN DES REVIEWS

Ziele, Scope und

Umfang definieren)
Vorgehen definieren
J
-
- Aufarbeiten der Vorphasen Stakeholder
interviewen
« Schlussfolgerungen erarbeiten
- Ergebnisse den Beteiligten Analysen
prasentieren durchfiihren

Ergebnisse
vorstellen

WER REVIEWT?

Nachteile Vorteile

_/5
B4

"'_
I\ ll
00)

A) Interne

Software Review

0
=4 —

s /g g—\
Externe z& & 5/ j

KostengUnstig

——" Reviewer Reviewer
« Fachliche Erfahrung * unabhangig
e Im Unternehmen vernetzt e neutral

gibt neue Impulse

Risiko "Betriebsblind"

Kein Benchmarking

Risiko "Befangen"
"Prophet im eigenen Land"

X

¢ |langere Einarbeitung
e Risiko "Oberflachlich"
e Hohere Kosten

© 2020 heise online

UNTERSUCHUNGSGEGENSTANDE

Was zu untersuchen ist

Architektur

Code
Technologie
Qualitat

Kontext
Infrastruktur

Daten

Laufzeit-
verhalten

Entwicklungs-
prozess

Dokumentation

Management

Komponenten, Subsysteme, Schnittstellen, Abhangigkeiten, Kopplung,
Kohasion, Konsistenz

Strukturierung, Komplexitat, Anderungshaufigkeit, Verstandlichkeit,
Kopplung, Einheitlichkeit

eingesetzte Basistechnologie, 3rd-Party

Erreichung von Qualitatsanforderungen
(z. B. Performance, Anderbarkeit, Robustheit, Benutzbarkeit, Betreibbarkeit)

externe Schnittstellen, externe Datenquellen und -senken, Benutzerrollen
verwendete Infrastruktur, Prozessoren, Netzwerke, Speichermedien etc.

Datenstrukturen, DB/DBMS, Korrektheit und Volatilitat, Replikation, Backup

Laufzeitverhalten und Speicherverhalten, allgemeine Ressourcennutzung,
Bottlenecks

Requirements- und Change-Management, Entwicklung, Test, Build,
Deployment, Versionsmanagement

Dokumentationsumfang, Aktualitat/Korrektheit und Akzeptanz, Konsistenz

Umgang mit Zeit und Budget, Ressourcenplanung, Organisation

eeeeeeeeeeeeeeeeeeeeeeee

INTERVIEWPARTNER

. Nutzer

» fachlich Verantwortliche

» technisch Verantwortliche

« Auftraggeber, Management

. Entwicklungsteam bzw. Mischung aus mehreren Teams

. Test/Qualitatssicherung
(falls nicht Teil des Entwicklungsteams)

. Personen aus Infrastruktur und/oder Betrieb
« Projekt- und Produkt-Manager

. in agilen Organisationen:
Product Owner, Scrum Master oder Agile Coach

€| n Of
k [[kb kb kb kb kb k k k k k kb k kb k kb [k [

ABSCHLUSSPRASENTATION

1. kurze, pragnante Management-Summary

2. Zusammenfassung organisatorischer Aspekte des Reviews

Was genau waren die Ziele und Scope des Reviews?

Welche Beschrankungen gibt es?

Wie wurde vorgegangen? Wie viel Zeit wurde (circa) worin investiert?

Mit wem hat wer worlber gesprochen, inklusive Daten und Dauer?

Welche Aktivitaten waren neben Gesprachen/Interviews Bestandteil des Reviews?
3. Welche Aspekte am System und dessen Entwicklung waren positiv zu bewerten?

4. Zusammenfassung der Probleme und Risiken

In welchen Kategorien waren Probleme und Risiken zu finden?

Welche Probleme gab es, beginnend mit den hdchsten Prioritaten?
Wo drohen Risiken?

Welche Auswirkungen sind zu erwarten oder sind bereits akut?

5. Zusammenfassung der vorgeschlagenen MaBnahmen
« MaBnahmen in welchen strategischen/technischen/organisatorischen Bereichen?
» Welche unterschiedlichen Optionen gibt es?

eeeeeeeeeeeeeeeeeeeeeeee

MEHR zU REVIEWS

https://www.heise.de/ratgeber/The-Art-of-Software-Reviews-
Probleme-und-Risiken-zielsicher-identifizieren-4990332.html

	Deployment und Software Reviews
	Aufbau der Lehrveranstaltung

	Deployment
	SPF Pattern / Monolith (1/2)
	SPF Pattern / Monolith (2/2)
	Micro Services (1/2)
	Micro Services (2/2)
	Micro Services Anti-Pattern (1/2)
	Micro Services Anti-Pattern (2/2)
	Micro Service Frontend Integration (1/6)
	Micro Service Frontend Integration (2/6)
	Micro Service Frontend Integration (3/6)
	Micro Service Frontend Integration (4/6)
	Micro Service Frontend Integration (5/6)
	Micro Service Frontend Integration (6/6)

	Software Review
	5 Phasen des Reviews: Phase 1
	5 Phasen des Reviews: Phase 2
	5 Phasen des Reviews: Phase 3
	5 Phasen des Reviews: Phase 4
	5 Phasen des Reviews: Phase 5
	Wer reviewt?
	Untersuchungsgegenstände
	Interviewpartner
	Abschlusspräsentation
	Mehr zu Reviews

