
Web- und App-Programmierung

Web- und App-Programmierung

Kommunikations-
mechanismen

mit Skriptmaterial von Dr.-Ing. T. Springer

Prof. Dr.-Ing. Tenshi Hara
fragen@lern.es

6
Version 2025a

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-2

AUFBAU DER LEHRVERANSTALTUNG

Basistechnologien und Herausforderungen

Mobile Middleware

Ortsbasierte
Dienste

Kontext
und

Adaption

Applikationsentwicklung

Abgetrennte
Operationen

Kommuni-
kations-
mecha-
nismen

Energie-
bewusstsein

Mobile Web Applikationen

Plattform-übergreifende Entwicklung

Android

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-3

SOCIAL-FITNESS-APP – KONNEKTIVITÄTSHERAUSFORDERUNG

• Hochladen lokaler Trainingsdaten und Medien

→ Anfrage/Antwort-Mechanismus (Request/Response, bspw. HTTP)

• Probleme

• heterogene Zugangsnetzwerke

• variierende Qualität und Stabilität

Radfahren

7. März 2020

27.3 km: 26:39
„Erste Etappe war eine einzige
Quälerei, beim nächsten Mal
geht’s bestimmt besser“

Server

Nutzer- und Teamdaten
(Training, Wettkämpfe etc.)

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

6-4Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

Request/Response-
Architektur

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-5

RPC-PRINZIP

• erweitern des lokalen Prozeduraufrufs auf einen entfernten Zugriff

• Ziel: syntaktische und semantische Uniformität
• Rufmechanismus (transparente Netzwerkkommunikation)
• Sprachelemente und Fehlersemantik

ServerClient

Client-
Anwen-
dung Client-

Stub
Laufzeit-
system

Laufzeit-
system

Server-
Skeleton

Server-
Anwen-

dung

Anfrage(P1,…,Pn)

Antwort(Ergebnis)

lokaler
Ruf

Schnittstellendefinition

generiere Abriss (Stub)
und Skelett (Skeleton)

Directory Service

3. binden
und rufen

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-6

RPC IN MOBILEN UMGEBUNGEN

• synchroner Kommunikationsmodus des RPC erfordert stehende und
stabile Netzwerkverbindung; demgegenüber

• häufige Trennungen in Drahtlosnetzwerken

• hohe Verzögerungen durch Nachrichtenwiederholungen

• hoher Energieverbrauch
→ Nutzer trennt Verbindung, wodurch Anwendung blockiert

• Rufe werden entsprechend logischem Programmablauf abgesetzt, aber

• in Abtrennungsphasen können keine RPC abgesetzt werden

• keine Bündelung multipler Rufe in eine Anfrage zur Ausnutzung
kurzzeitiger Verbindungen (oder höherer Bandbreiten)

• Client bindet sich zu Beginn einer Konversation an den Server;
demgegenüber wäre wegen Mobilität und Abtrennungen eine
Neubindung an anderen Server notwendig, wird aber nicht unterstützt

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-7

MOBILES RPC-KONZEPT (M-RPC)

M-RPC ermöglicht

• zuverlässige Rufvermittlung über unzuverlässige Verbindung

• optimierte RPC-Kommunikation

• dynamisches (Neu)Binden

Basisstation

RPC-
Proxy

RPC-Client
RPC-Anfrage

Promise
Status

RPC-Antwort

RPC-Server 1

RDP

Anfrage-Cache

RPC-Server 2

Neubinden

UDP/TCP

RPC-Anfrage

RPC-Antwort

Warteschlange RDP .. Reliable Data Protocol

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-8

M-RPC

• Proxy auf Basisstation innerhalb der Netzwerkinfrastruktur
• angepasstes Transportprotokoll zwischen mobilem Gerät und Basis
• Anfragen in Cache gehalten bis Client Antwortempfang bestätigt
• Neuübertragung von Anfragen durch Proxy

• Warteschlangen für Rufe und Ergebnisse auf Client und Proxy
• kumulierte Rufe → Bulking zur Durchsatzoptimierung

Basisstation

RPC-
Proxy

RPC-Client
RPC-Anfrage

Promise
Status

RPC-Antwort

RPC-Server 1

RDP

Anfrage-Cache

RPC-Server 2

Neubinden

UDP/TCP

RPC-Anfrage

RPC-Antwort

Warteschlange RDP .. Reliable Data Protocol

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-9

M-RPC

dynamisches Neubinden wegen Indirektion über Proxy

• Client logisch an Server, aber physisch an Proxy gebunden

• neue physische Bindung nach Abtrennung oder Ortswechsel

• Server-Zustand muss berücksichtigt werden

Basisstation

RPC-
Proxy

RPC-Client
RPC-Anfrage

Promise
Status

RPC-Antwort

RPC-Server 1

RDP

Anfrage-Cache

RPC-Server 2

Neubinden

UDP/TCP

RPC-Anfrage

RPC-Antwort

Warteschlange RDP .. Reliable Data Protocol

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-10

REPRESENTATIONAL STATE TRANSFER (REST)

• Modell für verteilte Hypermediasysteme

• erstmals von Roy Fielding (2000) spezifiziert

• im Web weit verbreitete Architektur

• viele Systeme bieten ReST-Schnittstellen

• im Vergleich zu Web Services sehr leichtgewichtig

• Menge vordefinierte Operationen → CRUD

• multiple Kodierungsformate
(mit JSON auch kompakt)

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-11

REPRESENTATIONAL STATE TRANSFER (REST)

• basiert auf Client/Server-Architektur

• nutzt zustandloses Kommunikationsprotokoll
→mangels serverseitigem Kontext und nur clientseitiger Sitzung muss

jede Anfrage alle notwendigen Informationen enthalten

• ReST-Anfragen an Ressourcen gebunden, nicht an Prozeduren wie bei RPC
• Ressource: Web-Seite, Datensammlung, Bild, …
• jede Ressource muss über einen eineindeutige URI erreichbar sein
• HTTP-Methoden als Operationsmenge (Create, Read, Update, Delete)
• kann multiple Repräsentationen haben (XML, JSON, …)

Client Server mit ReST-
Schnittstelle

 1. GET Ressource

 2.
3. Ressource

ändern

 4. POST Ressource Ressourcen

URI JSON

XML

···

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-12

REST – URIS UND METHODEN

Ressource
„zeitlinie“

Ressourcentyp GET POST PUT DELETE

Sammlung
https://example.com/
zeitlinie/aktivitaeten

Liste URIs und
Details der
Ressourcen auf

Erzeuge oder
ersetze Sammlung in
übergordneter
Ressource

Erzeuge
neues Element

Lösche adressierte
Sammlung

Element
https://example.com/
zeitlinie/aktivitaeten/

aktivitaet1

Liste Details der
adressierten
Ressource in ange-
brachtem Format auf

Erzeuge oder
ersetze adressierte
Ressource

Erzeuge neues
Element oder
ersetze existierendes

Lösche adressierte
Ressource

https://example.com/zeitlinie

Ressource
„aktivitaeten“

Ressource
„medien“

https://example.com/zeitlinie/
 aktivitaeten

Ressource
„aktivitaet1“

Ressource
„aktivitaet2“

https://example.com/zeitlinie/
 aktivitaeten/aktivitaet1

Ressource
„videoX“

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-13

JAVASCRIPT OBJECT NOTATION (JSON)

• Standardformat (spezifiziert als RFC 4627)

• unabhängig von der Programmiersprache

• menschenlesbare, textbasierte Datenkodierung

• JSON-Syntaxregeln

• Daten liegen in Name:Wert-Paaren vor

• Daten werden durch Kommata separiert

• geschweifte Klammern halten Objekte

• eckige Klammern halten Felder

"Aktivitaet":{ "AktivitaetsListe":[
"nutzer":"nutzerURI", {"nutzer1":"uri1","typ":"radfahrend"},
"typ":"radfahrend", {"nutzer2":"uri2","typ":"gehend"},
"entfernung":"120", {"nutzer3":"uri3","typ":"rennend"}
"zeit":"05:21:12",]
"medium":"videoXURI"

}

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-14

REST – IMPLEMENTIERUNGSPRINZIP

• Activity repräsentiert Bildschirm in Android

• Dienstebene

• applikationsspezifische API
(holeZeitlinie(), holeAktivitaet(), …)

• Kartenanwendungsspezifische
Dienstaufrufe auf ReST-Aufrufe

• verwaltet Anfragen bspw. in einer
Anfrageschlage

• bietet Rückruffunktion zur Activity

Anwendung

Dienstebene

ReST-Methoden

GET/POST/
PUT/DELETE

ReST-Dienst

Aufruf(Parameter) Rückruffunktion

starteDienst Rückruf

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-15

REST – IMPLEMENTIERUNGSPRINZIP

• ReST-Dienst (Dienst-API)

• trennt Netzwerkanfragen
vom GUI-Thread

• kann fortlaufen während App inaktiv ist

• Rückrufe zur Weiterleitung von
Ergebnissen an die Dienstebene

• ReST-Methoden

• generische Dienste für ReST-
Kommunikation

• implementiert GET/POST/…-Methoden

• generiert Aufrufentitäten

• verarbeitet Antworten

Anwendung

Dienstebene

ReST-Methoden

GET/POST/
PUT/DELETE

ReST-Dienst

Aufruf(Parameter) Rückruffunktion

starteDienst Rückruf

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-16

BEISPIEL: WIKIPEDIA-CLIENT

wikiSearch(query, receiver)

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-17

Dienstebene

ReST-Methoden

GET/POST/
PUT/DELETE

ReST-Dienst

Aufruf(Parameter) Rückruffunktion

starteDienst Rückruf

ANDROID ACTIVITY

AnwendungBeispiel: Wikipedia-Client zum Suchen
und Anzeigen von Artikeln

public class MainActivity extends Activity implements Receiver {
 private WikiServiceHelper serviceHelper;
 public RESTReceiver mReceiver;
 ...

public void onCreate(Bundle savedInstanceState) {
 ...
 serviceHelper = WikiServiceHelper.getInstance(this);
 mReceiver = new RESTReceiver(new Handler());
 mReceiver.setReceiver(this);
 }
 // Aufruf des ServiceHelper
 serviceHelper.wikiSearch(query, mReceiver);
 // Ergebnisempfang durch Rückruf
 public void onReceiveResult(int resultCode, Bundle resultData) {

...
}
...

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-18

Dienstebene

ReST-Methoden

GET/POST/
PUT/DELETE

ReST-Dienst

Aufruf(Parameter) Rückruffunktion

starteDienst Rückruf

Anwendung

SERVICE HELPER DER DIENSTEBENE

• einfache asynchrone API auf Anwendungsebene als Singleton
• erzeugt Intents und startet RESTService für jede Methode
• implementiert Empfänger (Receiver) → zum RESTService durchleitend

public class WikiServiceHelper
 implements Receiver {
 ...
 public void wikiSearch(String query, ResultReceiver receiver) {

Bundle extras = new Bundle();
// Zugriff auf https://de.wikipedia.org/w/api.php
// erfordert die Parameter „action“ und „search“:
extras.putString("action", "opensearch");
extras.putString("search", query);
// Anfrage-ID erzeugen

 String reqId = String.valueOf(new Date().getTime());
 // Receiver in HashMap hinterlegen
 callbacks.put(reqId, receiver);

Intent intent = new Intent(context,RESTService.class);
intent.putExtra(RESTService.RESULT_RECEIVER, receiver);

intent.putExtra(RESTService.REQ_ID, reqId);
context.startService(intent);

}
...

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-19

Dienstebene

ReST-Methoden

GET/POST/
PUT/DELETE

ReST-Dienst

Aufruf(Parameter) Rückruffunktion

starteDienst Rückruf

Anwendung

REST-DIENST IN ANDROID

ReST-Dienst erweitert IntentService → ReST-Aufruf in Intent gekapselt

public class RESTService extends IntentService {
 ...
 protected void onHandleIntent(Intent intent) {

// extrahiere URI der Ressource und weitere Parameter
Uri action_uri = intent.getData();
Bundle params = extras.getParcelable(PARAMS);
// HTTP-Methode setzen
int verb = extras.getInt(HTTP_VERB, GET);
// Rückrufempfänger definieren und ID holen
ResultReceiver receiver =

intent.getParcelableExtra(RESULT_RECEIVER);
String requestId = extras.getString(REQ_ID);
...
// eigentlicher Aufruf der ReST-Methode
...
Bundle resultData = new Bundle();
resultData.putString(REST_RESULT,EntityUtils.toString(responseEntity));
resultData.putString(ACTION, action.toString());
...
receiver.send(statusCode, resultData);
...

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-20

Dienstebene

ReST-Methoden

GET/POST/
PUT/DELETE

ReST-Dienst

Aufruf(Parameter) Rückruffunktion

starteDienst Rückruf

Anwendung

REST-METHODEN IN ANDROID

ReST-Methoden basieren auf java.net.URLConnection
• bereiten HTTP-URL und HTTP-Anfrage-Inhalt vor
• führen die HTTP-Transaktion aus
• verarbeiten die HTTP-Antwort

URL httpUrl = new URL(urlString);
HttpURLConnection httpConnection = (HttpURLConnection)httpUrl.openConnection();
httpConnection.setRequestMethod("GET");
if (httpConnection.getResponseCode() == HttpURLConnection.HTTP_OK) {

BufferedReader in = new BufferedReader(new InputStreamReader(
httpConnection.getInputStream()));

String inputLine;
StringBuffer response = new StringBuffer();
while ((inputLine = in.readLine()) != null) {

response.append(inputLine);
}
in.close();
Bundle resultData = new Bundle();
resultData.putString(REST_RESULT, response.toString());
...

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-21

SOCIAL-FITNESS-APP – REST

• Abrufen von Zeitlinieneinträgen

• Problem mit ReST
• heterogene Client-Anforderungen
• Über-/Unterversorgung (Over-Fetching und Under-Fetching)

nutzer

zeitlinie

aktivitaeten

medien

CRUD via HTTP

Server mit
ReST-Schnittstelle

Wettkampf: Ausdauerlauf 8. März 2020

5.7 km: 26:39

Beate
„cooler Lauf bei
herrlichem Wetter“

Radfahren 7. März 2020

27.3 km: 26:39

Du
„Erste Etappe war eine einzige Quälerei, beim
nächsten Mal geht’s bestimmt besser“
...mehr

Trainingsplan 9. März 2020

Zweite Stufe – Radfahren

Du
Warnung:
Schlechtes Wetter erwartet !!

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

6-22Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

Google Volley

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-23

GOOGLE VOLLEY – HAUPTEIGENSCHAFTEN

• begrenzte Bandbreite

• Anfragepriorisierung

• Anfrageabbruch

• Verbindungs- und Übertragungsfehler

• Warteschlangen (Queuing)

• Ergebnis-Caching

• Anfragewiederholung

[springer2015]

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-24

GOOGLE VOLLEY – GRUNDBAUSTEINE

• Anfragen (Request)

• repräsentiert HTTP-Anfragen

• Methoden: GET, POST, PUT, DELETE, …

• wohldefinierte Antworttypen (inkl. Standards wie String, JSON, …)

• Anfragewarteschlange (RequestQueue)

• einmaliges Element (Singleton) pro Anwendungsinstanz

• verantwortlich für Terminierung und Initiierung von Anfragen

• Antwortempfänger (ResponseListener)

• zum Empfang von Fehlern oder der eigentlichen Antwort

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-25

StringRequest req = new StringRequest(Request.Method.GET, "example.com",

new Response.Listener<String>() {
@Override
public void onResponse(String response) {

// irgendwas tolles mit der Antwort machen…
}

},

new Response.ErrorListener() {
@Override
public void onErrorResponse(VolleyError error) {

// Fehler behandeln (Schuld jemand anderem geben)
}

}

);

// Anfrage der Warteschlange hinzufügen
Volley.newRequestQueue(this).add(req);

GOOGLE VOLLEY – ANFRAGEINITIIERUNG

Request

Listener

Listener

Queue

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-26

GOOGLE VOLLEY – THREADING

Anfrage durch
Netzwerk-Dispatcher
aus Warteschlange

entnehmen

Anfrage durch
Netzwerk-Dispatcher
aus Warteschlange

entnehmen

Anfrage durch
Netzwerk-Dispatcher
aus Warteschlange

entnehmen

Cache-Verfehlung

Cache-
Treffer

Hauptaktivität
(Main Thread)

Cache-Aktivität
(Cache Thread)

Netzwerkaktivität
(Network Thread)

Legende:

Anfrage entsprechend
der Priorität in

Warteschlange einreihen

verarbeitete Antwort in
Hauptaktivität ausliefern

Anfrage durch Cache-
Dispatcher aus
Warteschlange

entnehmen

Anfrage aus Cache lesen
und verarbeiten

HTTP-Transaktion,
Antwortverarbeitung,

Cache-Schreiben
(falls zutreffend)

HTTP-Transaktion,
Antwortverarbeitung,

Cache-Schreiben
(falls zutreffend)

HTTP-Transaktion,
Antwortverarbeitung,

Cache-Schreiben
(falls zutreffend)

Aktivitätsvorrat
(Thread Pool)

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-27

GOOGLE VOLLEY – WIEDERHOLUNGSANFRAGEN

• Timeout

• Anzahl der Wiederholungen

• Backoff-Zeit
Req.setRetryPolicy(

new DefaultRetryPolicy(
initialTimeoutMs,
maxNumRetries,
backoffMultiplier

)
);

Beispiel:
Req.setRetryPolicy(

new DefaultRetryPolicy(1000, 3, 2.0f));

eigene
Policy

(Standard)

<<interface>>

RetryPolicy

getCurrentTimeout()

getCurrentRetryCount()

retry(error)

Default

RetryPolicy
initialTimeoutMs

maxNumRetries

backoffMultiplier

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-28

GOOGLE VOLLEY – CACHING

• transparenter Antwort-Cache

• Cache-Schnittstelle
Cache cache = new DiskBasedCache(

getCacheDir(),
maxCacheSizeInBytes

);
RequestQueue queue = new RequestQueue(

cache,
network

);

DiskBased

Cache
rootDir

maxSize

<<interface>>

Cache

get(key)

put(key,value)

remove(key)

clear()

eigene
Cache-Impl.

(Standard)

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-29

GOOGLE VOLLEY – PRIORISIERUNG

• nicht sofort verfügbar (kein Out-of-the-Box)

• vom Nutzer definierte Anfragen (abgeleitet vom StringRequest)
public abstract class PriorityRequest extends StringRequest {

private Priority mPriority;
public PriorityRequest(

int method, String url, Response.Listener<String> listener,
Response.ErrorListener errorListener, Priority priority

) {
super(method, url, listener, errorListener);
mPriority = priority;

}
@Override
public Priority getPriority() {

return mPriority;
}

}

Priority

LOW

NORMAL

HIGH

IMMEDIATE

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-30

GOOGLE VOLLEY – ANFRAGEABBRUCH

klare Abbruch-API

• individuelle Anfragen
req.cancel();

• Auswahl nach Tag
req.setTag("tag");
...
queue.cancelAll("tag");

• Auswahl nach Filter
queue.cancelAll(new LowPrioFilter());
public class LowPrioFilter implements RequestQueue.RequestFilter {

@Override
public boolean apply(Request<?> req) {

return(req.getPriority() == Request.Priority.LOW);
}

}

Wettkampf: Ausdauerlauf 8. März 2020

5.7 km: 26:39

Beate
„cooler Lauf bei
herrlichem Wetter“

Radfahren 7. März 2020

27.3 km: 26:39

Du
„Erste Etappe war eine einzige Quälerei, beim
nächsten Mal geht’s bestimmt besser“
...mehr

Trainingsplan 9. März 2020

Zweite Stufe – Radfahren

Du
Warnung:
Schlechtes Wetter erwartet !!

Radfahren 5. März 2020

24,8 km: 23:00

Du
„Schöne kleine Runde. Wenig los; konnte frei
fahren!“ ...mehr

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

6-31Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

bedarfsgetriebene
Architekturen

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-32

BEDARFSGETRIEBENE ARCHITEKTUREN [NOLAN, KOVAS; 2015]

Drei Leitprinzipien

• Bedarf: Clients deklarieren ihre Anforderungen über eine Anfragesprache

• Komposition: Bedarfe für unterschiedliche Eigenschaften können über
einen Rekursionsmechanismus mit in sich geschlossenen
(Unter)Bedarfsmeldungen zusammengestellt werden

• Bedarf wird rekursiv durch den Dienst interpretiert
(Interpretationsebene ist dem Backend ggü. agnostisch)

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-33

SOCIAL-FITNESS-APP – BEDARFSGETRIEBENER ANSATZ

• Server spezifiziert verfügbare Daten durch ein Schema (Introspektion)

• Client erzeugt individuelle, dem Schema entsprechende, Anfragen

• Server validiert Anfragen gegen das Schema

• Auflöserfunktionen (Resolver) behandeln Anfragefelder und generieren
Ergebnismenge (bspw. behandelt ein Resolver Nutzer und ihre Attribute,
ein anderer behandelt die Aktivitäten)

nutzer

zeitlinie

aktivitaeten

medien

Anfrage

Server mit bedarfs-
getriebener Schnittstelle

Wettkampf: Ausdauerlauf 8. März 2020

5.7 km: 26:39

Beate
„cooler Lauf bei
herrlichem Wetter“

Radfahren 7. März 2020

27.3 km: 26:39

Du
„Erste Etappe war eine einzige Quälerei, beim
nächsten Mal geht’s bestimmt besser“
...mehr

Trainingsplan 9. März 2020

Zweite Stufe – Radfahren

Du
Warnung:
Schlechtes Wetter erwartet !!

In
te

rp
re

ta
-

tio
ns

eb
en

e

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-34

BEISPIEL: GRAPHQL [FACEBOOK; 2012]

• seit dem Jahr 2013 durch Facebook-Apps auf iOS und Android verwendet

type Nutzer { type Zeitlinie { type Aktivitaet {
id : ID ! id : ID ! id : ID !
// das ! ist notwendig name : String name : String
name : String besitzer : Nutzer typ : String
historie : [Zeitlinie] teilnehmer : [Nutzer] zeitlinie : Zeitlinie

} aktivitaeten : [Aktivitaet] medien : [Medium]
} }

{
Nutzer (id : 123) {

name
zeitlinie (id : 1) {

name
aktivitaeten {

name
typ

}
}

}
}

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-35

BEDARFSGETRIEBENE ARCHITEKTUREN

• Anfragen werden vom Client festgelegt

• Server legt keine statische Schnittstelle fest

• variable Ergebnismenge (bspw. Attribut- und Ressourcenteilmenge)

• Komposition von Anfragen

• hierarchische Anfragen

• ressourcenübergreifende Anfragen

• starke Schema- & Anfragetypisierung → Server validiert vor Bearbeitung

• speicher-, protokoll- und programmiersprachen-agnostisch

• stabile Anfrageschnittstelle

• erweiterbar durch Schema

• benötigt keine Versionierung

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-36

Radfahren

7. März 2020

27.9 km: 26:58
„Voll langsam heute. Das Wetter
hat einfach nicht mitgespielt. Zu
hohe Luftfeuchtigkeit.“

SOCIAL-FITNESS-APP – KONNEKTIVITÄTSHERAUSFORDERUNG

• Distribution der Aktivitäten auf multiple Empfänger (Push vs. Pull)

Radfahren

7. März 2020

27.3 km: 27:15
„Heute ging gar nicht. So viele
langsame Leute unterwegs; man
kam gar nicht durch.“

Radfahren

7. März 2020

27.3 km: 26:39
„Erste Etappe war eine einzige
Quälerei, beim nächsten Mal
geht’s bestimmt besser“

Server

Nutzer- und Teamdaten
(Training, Wettkämpfe etc.)

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-37

NACHRICHTENDURCHREICHUNG

• grundlegendes Kommunikationsschema

• asynchron (wenn ohne Bestätigungen)

• keine Zustellgarantie

• synchron (wenn mit Bestätigungen)

• Client und Server müssen gleichzeitig online sein

• Sendender ist kurzzeitig blockiert

Sender Empfänger
Nachricht1

Bestätigung (ack)

sende() empfange()

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-38

ABONNEMENT (PUBLISH/SUBSCRIBE)

• zwei Rollen
• Anbieter (Supplier) – erzeugt Nachrichten
• Verbraucher (Consumer) – verarbeitet Nachrichten

• m:n-Kommunikation basierend auf Nachrichten

• inhärent asynchron

• flexibles Binden auf Basis von Abonnements (Subscription)

• direkte Kommunikation zwischen Anbieter und Verbraucher

Anbieter Verbraucher

Publish(Nachricht/Ereignis)

Subscribe/Unsubscribe

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-39

NACHRICHTENKANAL

• lose Kopplung – kein direkter Nachrichtenaustausch zwischen Anbietern und
Verbrauchern

• Beziehung zwischen Anbietern und Verbrauchern basiert auf
• Kanalauswahl – alle Nachrichten eines Kanals empfangen (Channel Selection)
→ subscribe("channel")

• Betreff – Filterung nach Schlüsselwort (Topic Selection) → subscribe("topic")
• Hierarchie – Pfad in Baum bestimmt Unterbaum; Abonnement aller Knoten im

Unterbaum (Path Selection) → subscribe("de/sachsen/dresden/temperatur")
• Inhalt – semantische Filterung nach Inhalt (Content Selection)
→ subscribe(messageContains="temperature AND Dresden")

Nachrichtenflussrichtung

Verbraucher
(Pull)

NachrichtenkanalAnbieter
(Push)

Anbieter
(Pull)

Verbraucher
(Push)

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-40

MEHRSCHICHTIGE ARCHITEKTUR

• Benachrichtigung – Datum repräsentiert Ereignis

• Überlagerungsstruktur

• ereignisbasierte Kommunikation zwischen Anbieter und Verbraucher

• diverse zugrunde liegende Kommunikationsmechanismen

Supplier Makler (Broker) Consumer

Anwendung

Kommunikationsebene (RPC, Multicast, Pub/Sub, etc.)

Benachrichti-
gungsdienst

Nachrichtenmakler Anwendung

Benachrichti-
gungsdienst

Ereignis

publish(notification)

Ereignis-
Cache

Abonne-
ments

Abonnement-
verwaltung

Benachrichti-
gungsfilter

subscribe()
unsubscribe()

notify()

Benachrichti-
gungsplanung

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-41

MOBILITÄTSPROBLEME

• physische Mobilität
• Anbieter/Verbraucher auf mobilen Knoten

• Ortsänderungen
• Abtrennungen

• transparente Übergabe zwischen Maklern
• Anpassung der

Benachrichtigungsrouten

• Verbraucher
• explizites Re-Abonnieren

am neuen Knoten
• moveOut/moveIn-Operationen

zur Abtrennung/Verbindung
• nicht möglich, falls Client Verbindung verliert
• fehlende Benachrichtigungen
• erweiterte Infrastrukturunterstützung

• Heartbeat zum Erkennen von Abtrennungen
• automatische Neuzuweisung von

Abonnements nach Neuverbindung

• Anbieter nutzen Ankündigungen (advertise/unadvertise)

Nachrichten-
Makler

B1

Verbraucher Verbraucher

Anbieter

Verbraucher

Anbieter

Verbraucher

Anbieter

Verbraucher

Nachrichten-
Makler

B2

Nachrichten-
Makler

B5

Nachrichten-
Makler

B3

Nachrichten-
Makler

B4

Verbraucher

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-42

ARCHITEKTUREN

verteilte Benachrichtigungswegeplanung
• Fluten (Flooding)

• Makler leitet Nachrichten an alle
Nachbarn weiter

• nur Makler mit direkt
verbundenen Verbrauchern
prüfen Filter

• filterbasiert Wegeplanung
• Makler hält Wegetabellen mit

(Filter; Ziel)-Paaren
• permanente Aktualisierung basierend auf

Subscribe/Unsubscribe-Ereignissen
• Optimierung durch Vereinigung sich

überlappender oder redundanter Abonnements
• Ausgleich: Wegetabellengröße und Aufwand

bei Aktualisierungen

Nachrichten-
Makler

B1

Verbraucher Verbraucher

Anbieter

Verbraucher

Anbieter

Verbraucher

Anbieter

Verbraucher

Nachrichten-
Makler

B2

Nachrichten-
Makler

B5

Nachrichten-
Makler

B3

Nachrichten-
Makler

B4

Verbraucher

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-43

BEISPIEL: MESSAGE QUEUE TELEMETRY TRANSPORT (MQTT)

• Topic-basierte Architektur

• jede Nachricht hat ein Topic

• hierarchisch organisiert → Abonnements auf unterschiedlichen Ebenen

Temperaturfühler MQTT-Makler

mobiles Endgerät

Laptoppublish: "21°C" subscribe

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-44

MQTT – DIENSTQUALITÄT (QUALITY OF SERVICE)

drei Dienstqualitätsebenen

• höchstens einmal (at-most-once)
Ebene 0 garantiert eine Zustellung größter Mühe. Eine Nachricht wird
durch den Empfänger nicht bestätigt und durch den Sender nicht
gespeichert oder wiederholt. Die zugrunde liegende Garantie ist die von
TCP (fire and forget).

• mindestens einmal (at-least-once)
Ebene 1 garantiert, dass Nachrichten mindestens einmal an den
Empfänger zugestellt werden. Vervielfältigung nicht ausgeschlossen.

• genau einmal (exactly-once)
Ebene 2 garantiert, dass jede Nachricht mindestens und maximal einmal
zugestellt wird. Sie ist die sicherste, aber auch langsamste Qualitäts-
ebene. Die Garantie basiert auf zwei Verbindungen zwischen Anbieter
und Verbraucher.

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-45

MQTT – ABTRENNUNGSBEHANDLUNG

• gesicherte Nachrichten (Retained Messages):
letzte Nachricht eines Topics wird vom Broker gespeichert und neuen
Abonnenten automatisch zugestellt

• Verfügung (Last Will and Testament / LWT):
Anbieter hinterlegt besondere Nachricht beim Broker, welche an alle
Abonnenten ausgeliefert wird sobald er unerwartet abgetrennt wird

• beharrliche Sitzung (Persistent Sessions)

• im Falle häufiger Abtrennungen

• Broker hält persistent Sitzungsinformationen und alle Nachrichten
eines Verbrauchers

• neuverbundene Verbraucher müssen nicht reabonnieren, sondern
erhalten sofort alle persistent zwischengespeicherten Nachrichten

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-46

MQTT-BEISPIEL

• clientseitige Bibliothek: Eclipse Paho

• MQTT-Broker: Mosquitto

• Beispiel-Client für Android

MQTT-Verbindungsaufbau

protected void onStart() {
super.onStart();
try {

MemoryPersistence persistance = new MemoryPersistence();
mqttClient = new MqttClient(

"tcp://198.51.100.222:1883",
"AndroidTest",
persistance

);
mqttClient.connect();
mqttClient.setCallback(this);

}
catch (MqttException e) { ... }

}

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-47

MQTT-BEISPIEL

MQTT-Rückruf

public void connectionLost(Throwable cause) {
Log.d("Main", "connection lost: " + cause);

}
public void messageArrived(String topic, MqttMessage message)
throws Exception {

Log.d("Main", "message received for topic: " + topic
+ ",\r\nmessage: " + message);

}
public void deliveryComplete(IMqttDeliveryToken token) {

Log.d("Main", "deliveryComplete for token: " +
token.getMessageId());
}

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-48

MQTT-BEISPIEL

MQTT-Abonnement

private boolean subscribe(String topic, int qos) {
try {

String topic = "topic/example";
int qos = 1;
mqttClient.subscribe(topic, qos);

}
catch (MqttException e) { ... }

}

MQTT-Veröffentlichung

MqttMessage message = new MqttMessage("Hello World".getBytes());
mqttClient.publish("topic/example", message);

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-49

MQTT-BEISPIEL

MQTT-Verbindungsabbau

protected void onStop() {
super.onStop();
if (mqttClient != null) {

if (mqttClient.isConnected()) {
try {

mqttClient.disconnect();
}
catch (MqttException e) { ... }

}
}

}

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-50

VERGLEICH DER INTERAKTIONSSCHEMATA

Request/Response (RPC) Publish/Subscribe (Nachrichten)

• enge Kopplung (Neubinden schwer) • lose Kopplung (dynamisches
Neubinden)

• 1:1-Kommunikation • m:n-Kommunikation

• synchron (Probleme bei Abtrennung) • asynchron (Abtrennungsbehandlung)

• vertrautes Interaktionsschema mit
Anfragen und Antworten

• simples Interaktionsschema

• Basis für komplexere Interaktionen

• zusätzlicher Aufwand für komplexe
Interaktionen notwendig

• Client und Server werden
synchronisiert

• Synchronisierung muss explizit
angestoßen werden

• keine Ergebnisse für Nachrichten

• zusätzlicher Aufwand für
Zuverlässigkeit (at-most-once)

• zuverlässiger Nachrichtenaustausch auf
Basis der Nachrichtenschlangen

• Client/Server-Systeme
(Datenverarbeitung mit Ergebnissen)

• Lastverteilung, Parallelisierung,
Stapelverarbeitung, Ereignisverteilung

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

6-51Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

bidirektionale
Kommunikation

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-52

BIDIREKTIONALE KOMMUNIKATION – WEBSOCKETS

• persistente, bidirektionale, vollduplex TCP-Verbindung

• arbeitet auf bestehender oder neuer TCP-Verbindung

• initiiert durch WebSocket-Handshake via HTTP
GET /websocket HTTP/1.1
Host example.com
Origin: https://example.com
Connection: Upgrade
Upgrade: websocket
Sec-WebSocket-Key: mx3JhmBHl1EzLApfelhXDw==
Sec-WebSocket-Protocol: chat, superchat
Sec-WebSocket-Version: 13

• bestätigt vom Server, ebenfalls via HTTP
HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: HSacBirne0UkAGmm5OzZy2HaaBc=
Sec-WebSocket-Protocol: chat

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-53

BIDIREKTIONALE KOMMUNIKATION – WEBSOCKETS

• Erkennung prokurierter Kommunikation
• Websocket selbst erkennt Proxys nicht
• unterliegendes HTTP kann Proxy-Verbindung etablieren (HTTP Tunnel)

• Client
CONNECT proxy.example.com:22 HTTP/1.1
Proxy-Authorization: Basic encoded-credentials

• Server
HTTP/1.1 200 OK

• anschließend sendet Client alle Anfragen an Proxy
SSH-2.0-OpenSSH_4.3
...

• Austausch von Klartext oder Text-Blöcken über etablierte Verbindung

• unverschlüsselt (ws://…) oder TLS-verschlüsselt (wss://…)
→ Upgrade von https://… auf ws://… nicht möglich, umgekehrt schon!

• initiale HTTP-Verbindung kann nach WS-Etablierung geschlossen werden

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

6-54Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

Zusammenfassung
und Aufgaben

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-55

ZUSAMMENFASSUNG

• Anfrage/Antwort-Interaktion (Request/Response)
• mobiles RPC-Konzept
• ReST-Dienste
• Beispiel: Google Volley

• Bedarfsgesteuerte Architekturen
• clientseitige Anfragen
• Beispiel: GraphQL

• ereignisgetriebene Kommunikation
• Abonnement-Mechanismus (Publish/Subscribe)
• Ereigniskanal (Event Channel)
• Beispiel: MQTT

• bidirektionale Kommunikation am Beispiel WebSockets

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-56

AUFGABEN

• Diskutieren Sie mit Ihren Kommilitonen, wie Sie einen WWW-Server zu
einem ReST-Dienst erweitern können.
Welche Anpassungen sind an Firewalls notwendig, um ReST nutzen zu
können? Welche Anpassungen an Proxys?

• Googlen Sie nach XMPP und diskutieren Sie mit Ihren Kommilitonen
Ähnlichkeiten und Unterschiede zu MQTT!
Was sind sinnvolle Einsatzszenarien für Message Queues?
Wie würden Sie eine Chat-Anwendung umsetzen in MQTT? …in XMPP?
(Vergessen Sie nicht, dass Anwender offline sein können, aber trotzdem
Nachrichten zugestellt bekommen wollen!)

• Diskutieren Sie mit Ihren Kommilitonen sinnvolle Szenarien für
WebSocket-Kommunikation.
Wann ist der parallele Einsatz von HTTP und WS sinnvoll?
Wann lohnt es sich, die HTTP-Verbindung zu schließen? Wann nicht?

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

Prof. Dr.-Ing. Tenshi Hara Web- und App-Programmierung
Kommunikationsmechanismen

6-57

REFERENZEN

Bakre, A.V. & Badrinath, B.R. M-RPC: A Remote Procedure Call Service for
Mobile Clients; Mobile Computing and Networking, 1995, 97-110
Fiege, L., Mühl, G., Pietzuch, R.: Distributed Event-Based Systems.
Springer, Berlin, 2006
Google I/O 2010 – Android REST client applications
http://www.youtube.com/watch?v=xHXn3Kg2IQE
Google (2013): „Transmitting Network Data Using Volley“. Android
Developers. Abgerufen am 15.06.2016 von
https://developer.android.com/training/volley.
Google (2016): „Material Design“. Abgerufen am 15.06.2016 von
https://www.google.com/design/spec/components/lists.html
Kirkpatrick, Ficus (2013): „Google I/O 2013 - Volley: Easy, Fast
Networking for Android“. YouTube. Abgerufen am 15.06.2016 von
https://www.youtube.com/watch?v=yhv8l9F44qo.
MQTT: http://mqtt.org

→ Request/Response-Architektur Google Volley bedarfsgetriebene Architekturen WS Zsfsg

	Einführung
	Aufbau der Lehrveranstaltung
	Social-Fitness-App – Konnektivitätsherausforderung

	Request/Response-Architektur
	RPC-Prinzip
	RPC in mobilen Umgebungen
	mobiles RPC-Konzept (M-RPC)
	M-RPC
	M-RPC
	Representational State Transfer (ReST)
	Representational State Transfer (ReST)
	ReST – URIs und Methoden
	JavaScript Object Notation (JSON)
	ReST – Implementierungsprinzip
	ReST – Implementierungsprinzip
	Beispiel: Wikipedia-Client
	Android Activity
	Service Helper der Dienstebene
	ReST-Dienst in Android
	ReST-Methoden in Android
	Social-Fitness-App – ReST

	Google Volley
	Google Volley – Haupteigenschaften
	Google Volley – Grundbausteine
	Google Volley – Anfrageinitiierung
	Google Volley – Threading
	Google Volley – Wiederholungsanfragen
	Google Volley – Caching
	Google Volley – Priorisierung
	Google Volley – Anfrageabbruch

	bedarfsgetriebene Architekturen
	bedarfsgetriebene Architekturen [Nolan, Kovas; 2015]
	Social-Fitness-App – bedarfsgetriebener Ansatz
	Beispiel: GraphQL [Facebook; 2012]
	bedarfsgetriebene Architekturen
	Social-Fitness-App – Konnektivitätsherausforderung
	Nachrichtendurchreichung
	Abonnement (Publish/Subscribe)
	Nachrichtenkanal
	mehrschichtige Architektur
	Mobilitätsprobleme
	Architekturen
	Beispiel: Message Queue Telemetry Transport (MQTT)
	MQTT – Dienstqualität (Quality of Service)
	MQTT – Abtrennungsbehandlung
	MQTT-Beispiel
	MQTT-Beispiel
	MQTT-Beispiel
	MQTT-Beispiel
	Vergleich der Interaktionsschemata

	bidirektionale Kommunikation
	bidirektionale Kommunikation – WebSockets
	bidirektionale Kommunikation – WebSockets

	Zusammenfassung und Aufgaben
	Zusammenfassung
	Aufgaben
	Referenzen

