Web- und App-Programmierung

Kommunikations-
mechanismen

mit Skriptmaterial von Dr.-Ing. T. Springer

Prof. Dr.-Ing. Tenshi Hara
fragen@lern.es

AUFBAU DER LEHRVERANSTALTUNG

Kontext
und
Adaption

Applikationsentwicklung

Plattform-Uubergreifende Entwicklung

Android Mobile Web Applikationen

Mobile Middleware

Kommuni-
Abgetrennte Ortsbasierte kations- Energie-
Operationen Dienste mecha- bewusstsein
nismen

Basistechnologien und Herausforderungen

—

SoOCIAL-FITNESS-APP — KONNEKTIVITATSHERAUSFORDERUNG

 Hochladen lokaler Trainingsdaten und Medien

— Anfrage/Antwort-Mechanismus (Request/Response, bspw. HTTP)

Radfahren

7. Marz 2020

> Server

27.3 km: 26:39

.Erste Etappe war eine einzige
Qualerei, beim nachsten Mal
geht's bestimmt besser”

 Probleme
* heterogene Zugangsnetzwerke

e variierende Qualitat und Stabilitat

(I

Nutzer- und Teamdaten
(Training, Wettkampfe etc.)

]
Request/Response- <<

Architektur ;
$7
w A X

— Request/Response-Architektur

RPC-PRINZIP

Directory Service

' | Client- E Anfrage(Py,...,Py) i Server- E
v |Anwen- ~ > : ? > N Anwen-| |
' / : . ' i ' . '
; dunglokaler Client- Laufzeit- | ¢ 3. Blnnéj?lr}fen 1| Laufzeit- Server- Ruf-Ver(.jung '
E Ruf Stub system ; E system Skeleton arbeitung E
: ' Antwort(Ergebnis); ;
' N\ aa < (Erg) -t - ;
i Client : : E Server
Llecccccccccccccccas becccmcccccedgeaccccccccacccaaaal L !

--------------------------------- decccccccccccccaa
3

generiere Abriss (Stub)
und Skelett (Skeleton)

Schnittstellendefinition)(............

e erweitern des lokalen Prozeduraufrufs auf einen entfernten Zugriff
» Ziel: syntaktische und semantische Uniformitat
 Rufmechanismus (transparente Netzwerkkommunikation)
» Sprachelemente und Fehlersemantik

RPC IN MOBILEN UMGEBUNGEN

» synchroner Kommunikationsmodus des RPC erfordert stehende und
stabile Netzwerkverbindung; demgegenuber

* haufige Trennungen in Drahtlosnetzwerken
 hohe Verzégerungen durch Nachrichtenwiederholungen
 hoher Energieverbrauch
— Nutzer trennt Verbindung, wodurch Anwendung blockiert
 Rufe werden entsprechend logischem Programmablauf abgesetzt, aber
* in Abtrennungsphasen konnen keine RPC abgesetzt werden
« keine Bundelung multipler Rufe in eine Anfrage zur Ausnutzung

kurzzeitiger Verbindungen (oder h6éherer Bandbreiten)

e Client bindet sich zu Beginn einer Konversation an den Server;
demgegenuber ware wegen Mobilitat und Abtrennungen eine
Neubindung an anderen Server notwendig, wird aber nicht unterstutzt

— Request/Response-Architektur

MOBILES RPC-KoONzEPT (M-RPC)

M-RPC ermaoglicht
» zuverlassige Rufvermittlung uber unzuverlassige Verbindung

» optimierte RPC-Kommunikation

 dynamisches (Neu)Binden

Basisstation
RPC-Server 1

Anfrage-Cache

RPC-Client
RPC-Anfrage

RPC-Anfrage { RPC-
—> 7| Proxy UDP/TCP

v RDP | RPC-Server 2

Status
RPC-Antwort RPC-Antwort

Neubinden

Warteschlange RDP .. Reliable Data Protocol

Request/Response-Architektur

—

M-RPC

* Proxy auf Basisstation innerhalb der Netzwerkinfrastruktur
» angepasstes Transportprotokoll zwischen mobilem Gerat und Basis
 Anfragen in Cache gehalten bis Client Antwortempfang bestatigt

 Neulbertragung von Anfragen durch Proxy

 Warteschlangen fur Rufe und Ergebnisse auf Client und Proxy
 kumulierte Rufe — Bulking zur Durchsatzoptimierung

Basisstation

Anfrage-Cache

.
.
.
'

RPC-

Proxy

Warteschlange

RPC-Client
RPC-Anfrage
RPC-Anfrage
— > >
L/ RDP
Status
RPC-Antwort RPC-Antwort

—
o

UDP/TCP

RPC-Server 1

RDP .. Reliable Data Protocol

I

Neubinden

RPC-Server 2

—

M-RPC

Request/Response-Architektur

dynamisches Neubinden wegen Indirektion tber Proxy

* Client logisch an Server, aber physisch an Proxy gebunden

* neue physische Bindung nach Abtrennung oder Ortswechsel

» Server-Zustand muss berucksichtigt werden

Basisstation

Anfrage-Cache

Warteschlange

—
o

UDP/TCP

RPC-Server 1

RPC-Client
RPC-Anfrage
RPC-Anfrage]
g »| RPC-
Proxy
v RDP
Status
RPC-Antwort RPC-Antwort

RDP .. Reliable Data Protocol

I

Neubinden

RPC-Server 2

eeeeeeeeeeeeeeeeeeeeeeeeeee

REPRESENTATIONAL STATE TRANSFER (REST)

Modell far verteilte Hypermediasysteme

» erstmals von Roy Fielding (2000) spezifiziert

Im Web weit verbreitete Architektur

viele Systeme bieten ReST-Schnittstellen

Im Vergleich zu Web Services sehr leichtgewichtig
 Menge vordefinierte Operationen — CRUD

 multiple Kodierungsformate
(mit JSON auch kompakt)

Response-Architektur

— Request/|
E EBEEELEELELE

REPRESENTATIONAL STATE TRANSFER (REST)
» basiert auf Client/Server-Architektur

* nutzt zustandloses Kommunikationsprotokaoll
— mangels serverseitigem Kontext und nur clientseitiger Sitzung muss
jede Anfrage alle notwendigen Informationen enthalten

 ReST-Anfragen an Ressourcen gebunden, nicht an Prozeduren wie bei RPC
* Ressource: Web-Seite, Datensammlung, Bild, ...
» jede Ressource muss Uber einen eineindeutige URI erreichbar sein
« HTTP-Methoden als Operationsmenge (Create, Read, Update, Delete)
« kann multiple Reprasentationen haben (XML, JSON, ...)

Client 1. GET Ressource Server mit ReST-
> Schnittstelle

3. Ressource
andern 2. o

N - -~

— A. POST Ressource

> Ressourcen

Request/Response-Architektur

—

REST — URIS UND METHODEN

Ressource
L Zeltlinie®

https://example.com/zeitlintie

Ressource Ressource https://example.com/zeitlinie/
,medien“ »aktivitaeten“ aktivitaeten

Ressource Ressource Ressource https://example.com/zeitlinie/
L videoX* aktivitaetl“ ,aktivitaet2“ aktivitaeten/aktivitaetl

Ressourcentyp GET POST PUT DELETE
. Erzeuge oder
Sammlung I[_)Ie?t;eilsUs:esr und ersetze Sammlung in |Erzeuge Losche adressierte
LR A E ol CHELII tibergordneter neues Element Sammlung
EGEELGVIEEEN Ressourcen auf R
essource
E LS I;lélsrteess[i):ri?:]s e Erzeuge oder Erzeuge neues Losche adressierte

https://example.com/ : ersetze adressierte |Element oder

SN IYE e W/l Ressource in ange- Ressource ersetze existierendes Ressource

aktivitaetl brachtem Format auf

eeeeeeeeeeeeeeeeeeeeeeeeeeeee

JAVASCRIPT OBJECT NOTATION (JSON)
o Standardformat (spezifiziert als RFC 4627)
 unabhangig von der Programmiersprache

* menschenlesbare, textbasierte Datenkodierung

* JSON-Syntaxregeln

 Daten liegen in Name:Wert-Paaren vor
 Daten werden durch Kommata separiert
» geschweifte Klammern halten Objekte

» eckige Klammern halten Felder

"Aktivitaet":{ "AktivitaetsListe":[
"nutzer":"nutzerURI", {"nutzerl":"uril","typ":"radfahrend"},
"typ":"radfahrend", {"nutzer2":"uri2","typ":"gehend"},
"entfernung":"120", {"nutzer3":"uri3","typ":"rennend"}
"zelt":"05:21:12",]

"medium" :"videoXURI"

— Request/Response-Architektur
E b EhEEELREREREREL

REST — IMPLEMENTIERUNGSPRINZIP

Anwendung

o Activity reprasentiert Bildschirm in Android Aufruf(Parameter) Ruckruffunktion

» Dienstebene Dienstebene

» applikationsspezifische API
(holeZeitlintie(), holeAktivitaet(), ..

) starteDienst Ruckruf

« Kartenanwendungsspezifische ReST-Dienst

Dienstaufrufe auf ReST-Aufrufe
ReST-Methoden
» verwaltet Anfragen bspw. in einer

Anfrageschlage

GET/POST/
PUT/DELETE

* bietet Ruckruffunktion zur Activity

— Request/Response-Architektur
E b EhEEEbELREREERERERE

REST — IMPLEMENTIERUNGSPRINZIP

 ReST-Dienst (Dienst-API)

Anwendung

* trennt Netzwerkanfragen

vom GUI-Thread Aufruf(Parameter) Ruckruffunktion

« kann fortlaufen wahrend App inaktiv ist Dienstebene

* RlUckrufe zur Weiterleitung von

Ergebnissen an die Dienstebene starteDienst Rickruf

« ReST-Methoden ReST-Dienst

» generische Dienste flur ReST- ReST-Methoden
Kommunikation

GET/POST/

* implementiert GET/POST/...-Methoden PUT/DELETE

* generiert Aufrufentitaten

e verarbeitet Antworten

Request/Response-Architektur

—

BEISPIEL: WIKIPEDIA-CLIENT

08:08 (%) 08:08 ® ST V]

&« Q, search Wikipedia @ ..

<« Search Wikipedia

@ ENGLISH m D 3 maore

Staatliche
Studienakademie Dresden

Standorte der Berufsakademie Sachsen

Die Staatliche Studienakademie Dresden ist
einer der Standorte der B

hsen und stellt neben der TL
Dresden und anderen Hochschulen eine weitere
Einrichtung im tertidren Bildungsbereich der

Landeshauptstadt dar.
ch and read the free encyclopedia in your

language W.l. k 1. S ea r C h (q U e ry 9 r e C e 'LVG I") Schnelle Fakten Berufsakademie Sachsen —

Staatliche Studienakademie Dresden, Motto ...

»

Geschichte

Namespaces S er: Portal: Hilfe:

8 B or & & @

1950 erfolgte die Griindung einer Techniker-
Abendschule in Freital bei Dresden, 1953 der
Abendfachschule fiir Holztechnik ebenfalls in Freital
sowie 1954 der Fachschule fir Holztechnologie in

1 2 3 4 &5 6 T .8
gwertzuio

Dresden, mit spéaterer Namenséanderung in
Ingenieurschule fir Holztechnik Dresden.

1991 entstand ein Antrag fir ein Pilotprojekt
JBerufsakademie” an das Sachsische Staatsministerium
flir Wissenschaft und Kunst. Letztmals wurden

X [T =

Language Find in article Theme Contents

— Request/Response-Architektur
E bk kbR EREEREEERELRE

ANDROID ACTIVITY

Beispiel: Wikipedia-Client zum Suchen

und Anzeigen von Artikeln

public class MainActivity extends Activity implements Receiver {
private WikiServiceHelper serviceHelper;
public RESTReceiver mReceiver;

public void onCreate(Bundle savedInstanceState) {

serviceHelper = WikiServiceHelper.getInstance(this);
mReceiver = new RESTReceiver(new Handler());
mReceiver.setReceiver(this);

}

// Aufruf des ServiceHelper
serviceHelper.wikiSearch(query, mReceiver);

// Ergebnisempfang durch Rickruf
public void onReceiveResult(int resultCode, Bundle resultData) {

, e

— Request/Response-Architektur
E b E kbR EREEREEREERERELRLEE

SERVICE HELPER DER DIENSTEBENE

» einfache asynchrone APl auf Anwendungsebene als Singleton
e erzeugt Intents und startet RESTService fiur jede Methode
« implementiert Empfanger (Receiver) — zum RESTService durchleitend

public class WikiServiceHelper

implements Receiver {

public void wikiSearch(String query, ResultReceiver receiver) {
Bundle extras = new Bundle();
// Zugriff auf https://de.wikipedia.org/w/apti.php
// erfordert die Parameter ,action” und ,search®:
extras.putString("action", "opensearch");
extras.putString("search", query);
// Anfrage-ID erzeugen
String reqld = String.valueOf(new Date().getTime());
// Receiver in HashMap hinterlegen
callbacks.put(reqld, receiver);
Intent intent = new Intent(context,RESTService.class);
intent.putExtra(RESTService.RESULT_RECEIVER, receiver);
intent.putExtra(RESTService.REQ_ID, reqld);
context.startService(intent);

}

— Request/Response-Architektur
E b EEEE R EREEREEREERELRLRLEE

REST-DIENST IN ANDROID

ReST-Dienst erweitert IntentService — ReST-Aufruf in Intent gekapselt

public class RESTService extends IntentService {

protected void onHandleIntent(Intent intent) {
// extrahiere URI der Ressource und weitere Parameter
Uri action_uri = intent.getData();
Bundle params = extras.getParcelable(PARAMS);
// HTTP-Methode setzen
int verb = extras.getInt(HTTP_VERB, GET);
// Ruckrufempfanger definieren und ID holen

ResultReceilver receiver =
intent.getParcelableExtra(RESULT_RECEIVER); ReST-Dienst

String requestId = extras.getString(REQ_ID);

// eigentlicher Aufruf der ReST-Methode

Bundle resultData = new Bundle();
resultData.putString(REST_RESULT,EntityUtils.toString(responseEntity));
resultData.putString(ACTION, action.toString());

receiver.send(statusCode, resultData);

— Request/Response-Architektur
E b EEEE R R R R R R REERERERER

REST-METHODEN IN ANDROID

ReST-Methoden basieren auf java.net.URLConnection
* bereiten HTTP-URL und HTTP-Anfrage-Inhalt vor

» fUhren die HTTP-Transaktion aus

» verarbeiten die HTTP-Antwort

URL httpUrl = new URL(urlString);
HttpURLConnection httpConnection = (HttpURLConnection)httpUrl.openConnection();
httpConnection.setRequestMethod("GET");
if (httpConnection.getResponseCode() == HttpURLConnection.HTTP_OK) {
BufferedReader in = new BufferedReader(new InputStreamReader(
httpConnection.getInputStream()));

String inputLine;
StringBuffer response = new StringBuffer(); ReST-Methoden
while ((inputLine = in.readLine()) !'= null) A

response.append(inputlLine);
}
in.close();
Bundle resultData = new Bundle();
resultData.putString(REST_RESULT, response.toString());

— Request/Response-Architektur
E bk kbR EE R R R R ERERERE

SOCIAL-FITNESS-APP — REST

* Abrufen von Zeitlinieneintragen

@ Trainingsplan

Zweite Stufe — Radfahren
Du

LT

5.7 km: 26:39

ooooooooooooo

Radfahren

27.3 km: 26:39

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Warnung
Schlechtes Wetter erwartet !

9. Mérz 2020

°A

Y
o |'| Wettkampf: Ausdauerlauf 8. Méarz 2020
\:3/

Server mit
ReST-Schnittstelle

nutzer

CRUD via HTTP

zeitlinie

* Problem mit ReST

* heterogene Client-Anforderungen
« Uber-/Unterversorgung (Over-Fetching und Under-Fetching)

aktivitaeten

medien

Google Volley

N g

- = ¥ [

—

GOOGLE VOLLEY — HAUPTEIGENSCHAFTEN

* begrenzte Bandbreite
» Anfragepriorisierung

» Anfrageabbruch

 Verbindungs- und Ubertragungsfehler
« Warteschlangen (Queuing)
* Ergebnis-Caching

 Anfragewiederholung

— Google Volley
B bk kbR bR R R R R R ERERERERLRE h kb

GOOGLE VOLLEY — GRUNDBAUSTEINE

 Anfragen (Request)
» reprasentiert HTTP-Anfragen
 Methoden: GET, POST, PUT, DELETE, ..
» wohldefinierte Antworttypen (inkl. Standards wie String, JSON, ...)

* Anfragewarteschlange (RequestQueue)
 einmaliges Element (Singleton) pro Anwendungsinstanz

» verantwortlich flr Terminierung und Initiierung von Anfragen

 Antwortempfanger (ResponseListener)

« zum Empfang von Fehlern oder der eigentlichen Antwort

Google Volley

— Request/Response-Architektur
E bk EEE R EREEE R R R EREERERE hhk

GOOGLE VOLLEY — ANFRAGEINITIIERUNG

Request StringRequest req = new StringRequest(Request.Method.GET, "example.com",
: new Response.Listener<String>() {
Listener public void onResponse(String response) {
// irgendwas tolles mit der Antwort machen..
; }
: b
: new Response.ErrorListener() {
. public void onErrorResponse(VolleyError error) {
Listener // Fehler behandeln (Schuld jemand anderem geben)
}
¥
)3
ueue |« // Anfrage der Warteschlange hinzuflugen
Q Volley.newRequestQueue(this).add(req);

—

Request/Response-Architektur

Google Volley

GOOGLE VOLLEY — THREADING

Aktivitatsvorrat _|
(Thread Pool)

Anfrage entsprechend
der Prioritat in
Warteschlange einreihen

Anfrage durch Cache-
Dispatcher aus
Warteschlange

entnehmen

— — —— —

Cache-Verfehlung

Anfrage durch
Netzwerk-Dispatcher
aus Warteschlange
entnehmen

Anfrage durch
Netzwerk-Dispatcher
aus Warteschlange
entnehmen

— —— —— — —— — -

Anfrage durch
Netzwerk-Dispatcher
aus Warteschlange
entnehmen

Cache-
Treffer

verarbeitete Antwort in
Hauptaktivitat ausliefern

Anfrage aus Cache lesen

und verarbeiten

HTTP-Transaktion,
Antwortverarbeitung,
Cache-Schreiben
(falls zutreffend)

A

HTTP-Transaktion,
Antwortverarbeitung,
Cache-Schreiben
(falls zutreffend)

Legende:

HTTP-Transaktion,
Antwortverarbeitung,
Cache-Schreiben
(falls zutreffend)

Hauptaktivitat
(Main Thread)

Cache-Aktivitat
(Cache Thread)

Netzwerkaktivitat
(Network Thread)

Request/Response-Architektur Google Volley

. t/Resp hitek
| 5 kbbb bR bR R LR R LRLRELRERE hhk

GOOGLE VOLLEY — WIEDERHOLUNGSANFRAGEN

 Timeout
<<interface>>
e Anzahl der Wiederholungen RetryPolicy
. getCurrentTimeout()
* Backoff-Zeit getCurrentRetryCount()
Reqg.setRetryPolicy(retry(error)
new DefaultRetryPolicy(
initialTimeoutMs,
maxNumRetries,
backoffMultiplier Default eigene
) RetryPolicy Policy
)) initialTimeoutMs
Beispiel: maxNumRetries
backoffMultiplier

Reqg.setRetryPolicy(
new DefaultRetryPolicy(1000, 3, 2.0f)); (Standard)

Request/Response-Architektur Google Volley

. t/Resp hitek
| 5 kbbb bR bR R LR R LRLRELRERE EhhEELEE

GOOGLE VOLLEY — CACHING

<<interface>>
« transparenter Antwort-Cache Cache
get(key)
» Cache-Schnittstelle put(key,value)
Cache cache = new DiskBasedCache(remove(key)
getCacheDir(), clear()
maxCacheSizelInBytes
);
RequestQueue queue = new RequestQueue(:
network Cache Cache-Imptl.
)3 rootDir
maxSize

(Standard)

le Volley

— Request/Response-Architektur Goog
E bk EEE R EREEE R R R EREERERE EhbEEbELE

GOOGLE VOLLEY — PRIORISIERUNG

* nicht sofort verfugbar (kein Out-of-the-Box)

 vom Nutzer definierte Anfragen (abgeleitet vom StringRequest)

public abstract class PriorityRequest extends StringRequest {
private Priority mPriority;

public PriorityRequest(
int method, String url, Response.Listener<String> listener,

Response.ErrorListener errorListener, Priority priority

) A

super(method, url, listener, errorListener);
mPriority = priority;

}
public Priority getPriority() { Priority
return mPriority; LOwW
’ NORMAL
} HIGH
IMMEDIATE

Request/Response-Architektur Google Volley

. t/Resp hitek
| 5 kbbb bR bR R LR R LRLRELRERE EhbhbEEELELE

GOOGLE VOLLEY — ANFRAGEABBRUCH

klare AberCh_AP I Zweite Stufe — Radfahren

* individuelle Anfragen

Wettkampf: Ausd lauf 8. Marz 2020
reg.cancel(); giﬁw'ww
 Auswahl nach Tag o
req.setTag("tag"); 20

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

queue.cancelAll("tag");

 Auswahl nach Filter

queue.cancelAll(new LowPrioFilter());
public class LowPrioFilter implements RequestQueue.RequestFilter {

public boolean apply(Request<?> req) {
return(req.getPriority() == Request.Priority.LOW);
}

-
bedarfsgetriebene <<

Architekturen ;
$7
w A X

Google Volley bedarfsgetriebene Architekturen

— Request/Response-Architektur
B bk kbR bR R R R R R ERERERERLRE kbbb EE [

BEDARFSGETRIEBENE ARCHITEKTUREN [NoLaN, Kovas; 2015]

Drei Leitprinzipien
 Bedarf: Clients deklarieren ihre Anforderungen tber eine Anfragesprache

« Komposition: Bedarfe fur unterschiedliche Eigenschaften konnen uber
einen Rekursionsmechanismus mit in sich geschlossenen
(Unter)Bedarfsmeldungen zusammengestellt werden

* Bedarf wird rekursiv durch den Dienst interpretiert
(Interpretationsebene ist dem Backend ggu. agnostisch)

ogle Voll bedarfsgetriebene Architekturen

— Request/Response-Architektur Go ey
B bk kbR bR R R R R R ERERERERLRE hhkhkk hhkk h b

SOCIAL-FITNESS-APP — BEDARFSGETRIEBENER ANSATZ

@ Trainingsplan 9. Méarz 2020 Se rver mit bedarfs_
getriebener Schnittstelle
g\lce:lr\zzzlgeswmtererwanelH ‘\A

nutzer

: , __ >

|| Wettkampf: Ausdauerlauf 8. Marz 2020 |

sTkmo2sae S 8 L.

peate N e Anfrage o O zeitlinie
e

< 59 —

2 s aktivitaeten
=

medien

Server spezifiziert verfugbare Daten durch ein Schema (Introspektion)

Client erzeugt individuelle, dem Schema entsprechende, Anfragen

Server validiert Anfragen gegen das Schema

Aufloserfunktionen (Resolver) behandeln Anfragefelder und generieren
Ergebnismenge (bspw. behandelt ein Resolver Nutzer und ihre Attribute,
ein anderer behandelt die Aktivitaten)

ogle Voll bedarfsgetriebene Architekturen

— Request/Response-Architektur Go Volley
B bk kbR bR R R R R R ERERERERLRE kbbb EE hhk

BEISPIEL: GRAPHQL [Facesook; 2012]

» seit dem Jahr 2013 durch Facebook-Apps auf iOS und Android verwendet

type Nutzer { type Zeitlinie { type Aktivitaet {
id : ID ! id : ID ! id : ID !
// das ! ist notwendig name : String name : String
name : String besitzer : Nutzer typ : String
historie : [Zeitlinie] teilnehmer : [Nutzer] zeitlinie : Zeitlintie
} aktivitaeten : [Aktivitaet] medien : [Medium]
} }
{
Nutzer (id : 123) {
name
zeitlinie (id : 1) {
name
aktivitaeten {
name
typ
}
}

— Request/Response-Architektur oogle Volle
B bk kbR bR R R R R R ERERERERLRE kbbb EE hhhkk

BEDARFSGETRIEBENE ARCHITEKTUREN

 Anfragen werden vom Client festgelegt
o Server legt keine statische Schnittstelle fest

» variable Ergebnismenge (bspw. Attribut- und Ressourcenteilmenge)

Komposition von Anfragen
* hierarchische Anfragen

* ressourcenubergreifende Anfragen

starke Schema- & Anfragetypisierung — Server validiert vor Bearbeitung

speicher-, protokoll- und programmiersprachen-agnostisch

stabile Anfrageschnittstelle
» erweiterbar durch Schema

* bendtigt keine Versionierung

— Request/Response-Architektur
E bk EEE R EREEE R R R EREERERE

ogle Voll

Go olley
EhbEbEELELE

bedarfsgetriebene Architekturen

SOCIAL-FITNESS-APP — KONNEKTIVITATSHERAUSFORDERUNG

 Distribution der Aktivitaten auf multiple Empfanger (Push vs. Pull)

Radfahren

7. Marz 2020

Radfahren

7. Méarz 2020

15

icht. So viele

urch.”

nterwegs; Thent

27.3 km: 26:39

+Erste Etappe war eine einzige
Qualerei, beim nachsten Mal
geht’s bestimmt besser

27.9 km: 26:58

sVoll langsam heute. Das Wetter
hat einfach nicht mitgespielt. Zu
hohe Luftfeuchtigkeit.”

Server

€

T

Nutzer- und Teamdaten
(Training, Wettkampfe etc.)

— Request/Response-Architektur oogle Volle
B bk kbR bR R R R R R ERERERERLRE kbbb EE hhhhkEkELE

NACHRICHTENDURCHREICHUNG

sende() empfange()
Nachricht,

Sender Empfanger

Bestatigung (ack)

* grundlegendes Kommunikationsschema

« asynchron (wenn ohne Bestatigungen)

» keine Zustellgarantie

* synchron (wenn mit Bestatigungen)
* Client und Server mussen gleichzeitig online sein

 Sendender ist kurzzeitig blockiert

eee

— g Y
N N N N U N G S A Ay N Ry Ay Wy Ay 8 kbbb EE kb hbhkEbkE

ABONNEMENT (PUBLISH/SUBSCRIBE)

) Subscribe/Unsubscribe
Anbieter \, \</erbraucher

/

Publish(Nachricht/Ereignis

-\
)

« zwei Rollen
* Anbieter (Supplier) — erzeugt Nachrichten
* Verbraucher (Consumer) — verarbeitet Nachrichten

« m:n-Kommunikation basierend auf Nachrichten
e inharent asynchron
» flexibles Binden auf Basis von Abonnements (Subscription)

e direkte Kommunikation zwischen Anbieter und Verbraucher

— Request/Response-Architektur
N NN RN NEE NN

NACHRICHTENKANAL

bedarfsgetriebene Architekturen

Google ey
kbbb EE kb hbEEELE

O

Anbieter
(Push)

S

Nachrichtenkanal
_
Nachrichtenflussrichtung

V-

A

Verbraucher
(Push)

Q/

Anbieter
(Pull)

~O

Verbraucher
(Pull)

* lose Kopplung — kein direkter Nachrichtenaustausch zwischen Anbietern und

Verbrauchern

* Beziehung zwischen Anbietern und Verbrauchern basiert auf

« Kanalauswahl — alle Nachrichten eines Kanals empfangen (Channel Selection)
— subscribe("channel")

e Betreff — Filterung nach Schlisselwort (Topic Selection) — subscribe("topic")

 Hierarchie — Pfad in Baum bestimmt Unterbaum; Abonnement aller Knoten im
Unterbaum (Path Selection) — subscribe("de/sachsen/dresden/temperatur")

* Inhalt — semantische Filterung nach Inhalt (Content Selection)
— subscribe(messageContains="temperature AND Dresden")

ogle Voll bedarfsgetriebene Architekturen

— Request/Response-Architektur Go olley
[b bk bk b bR R R R R R R R LREREL EhbhbEbEEEE hh bk bhbELEELRE

MEHRSCHICHTIGE ARCHITEKTUR

Supplier Makler (Broker) Consumer
Ereignis .
Anwendung Nachrichtenmakler Anwendung
Abonnement-
/ \ I
‘ verwaltung Abonne- subscribe()
publish(notification) Benachrichti- ments unsubscribe()
l gungsfilter m notify ()
Benachrichti- SRS |
Benachrichti- unasplanun Cache Benachrichti-
gungsdienst gungsp g gungsdienst
Kommunikationsebene (RPC, Multicast, Pub/Sub, etc.)
| |

 Benachrichtigung — Datum reprasentiert Ereignis

« Uberlagerungsstruktur
e ereignisbasierte Kommunikation zwischen Anbieter und Verbraucher

» diverse zugrunde liegende Kommunikationsmechanismen

— Request/Response-Architektur
B bk kbR bR R R R R R ERERERERLRE

MOBILITATSPROBLEME

* physische Mobilitat

 Anbieter/Verbraucher auf mobilen Knoten

« transparente Ubergabe zwischen Maklern

e Ortsanderungen
* Abtrennungen

Anpassung der
Benachrichtigungsrouten

 Verbraucher

explizites Re-Abonnieren

am neuen Knoten
moveOut/moveln-Operationen
zur Abtrennung/Verbindung

nicht moglich, falls Client Verbindung verliert

fehlende Benachrichtigungen

Anbieter

erweiterte Infrastrukturunterstiitzung

 Heartbeat zum Erkennen von Abtrennungen

e automatische Neuzuweisung von
Abonnements nach Neuverbindung

bedarfsgetriebene Architekturen

Verbraucher

Anbieter

Nachrichten-
Makler
B3

A

Nachrichten-
Makler

A J

Nachrichten-
Makler
B>

* Anbieter nutzen Ankindigungen (advertise/unadvertise)

Verbraucher

\

Verbraucher

Makler

B4

Nachrichten-

Nachrichten-
Makler
Bs

Verbraucher

Verbraucher

Anbieter

— Request/Response-Architektur
B bk kbR bR R R R R R ERERERERLRE hhhkk

ARCHITEKTUREN

verteilte Benachrichtigungswegeplanung
* Fluten (Flooding)

 Makler leitet Nachrichten an alle
Nachbarn weiter

e nur Makler mit direkt
verbundenen Verbrauchern

bedarfsgetriebene Architekturen

Verbraucher

Anbieter

Nachrichten-

Makler
B3

A

Nachrichten-
Makler

prufen Filter

B,

A J

Nachrichten-

Makler
B,

« filterbasiert Wegeplanung

 Makler halt Wegetabellen mit
(Filter; Ziel)-Paaren

 permanente Aktualisierung basierend auf
Subscribe/Unsubscribe-Ereignissen

* Optimierung durch Vereinigung sich
Uberlappender oder redundanter Abonneme

» Ausgleich: WegetabellengrofRe und Aufwand
bei Aktualisierungen

nts

Verbraucher

\

Nachrichten-
Makler
By

Verbraucher

Nachrichten-
Makler

Anbieter

Request/Response-Architektur Google Volley

— t/] P hitek bedarfsgetriebene Architekturen
E bk EEE R EREEE R R R EREERERE EhbEbEELELE bk kbbb EREERERELEE

BEISPIEL: MESSAGE QUEUE TELEMETRY TRANSPORT (MQTT)

-

st
.t
.t
st
“““
a®
a®
a®
a®

publish: "21°c* /[&\ ..

Temperaturfuhler MQTT-Makler

« Topic-basierte Architektur mobiles Endgerét
» jede Nachricht hat ein Topic

* hierarchisch organisiert - Abonnements auf unterschiedlichen Ebenen

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

— Google Volley
B bk kbR bR R R R R R ERERERERLRE kbbb EE kbbb EEEREEREREERELE

eeeeeeeeeeeeeeee -Architektur

MQTT — DIENSTQUALITAT (QUALITY OF SERVICE)

drei Dienstqualitatsebenen

* hochstens einmal (at-most-once)
Ebene O garantiert eine Zustellung grof3ter Muhe. Eine Nachricht wird
durch den Empfanger nicht bestatigt und durch den Sender nicht
gespeichert oder wiederholt. Die zugrunde liegende Garantie ist die von
TCP (fire and forget).

« mindestens einmal (at-least-once)
Ebene 1 garantiert, dass Nachrichten mindestens einmal an den
Empfanger zugestellt werden. Vervielfaltigung nicht ausgeschlossen.

* genau einmal (exactly-once)
Ebene 2 garantiert, dass jede Nachricht mindestens und maximal einmal
zugestellt wird. Sie ist die sicherste, aber auch langsamste Qualitats-
ebene. Die Garantie basiert auf zwei Verbindungen zwischen Anbieter
und Verbraucher.

eeeeeeeeeeeeeeee -Architektur bedarfsgetriebene Architekturen

— Google Volley
B bk kbR bR R R R R R ERERERERLRE kbbb EE kbbb bR bR R LR EERERELRE

MQTT — ABTRENNUNGSBEHANDLUNG

» gesicherte Nachrichten (Retained Messages):
letzte Nachricht eines Topics wird vom Broker gespeichert und neuen
Abonnenten automatisch zugestelit

« Verfiagung (Last Will and Testament / LWT):
Anbieter hinterlegt besondere Nachricht beim Broker, welche an alle
Abonnenten ausgeliefert wird sobald er unerwartet abgetrennt wird

* beharrliche Sitzung (Persistent Sessions)
* im Falle haufiger Abtrennungen

* Broker héalt persistent Sitzungsinformationen und alle Nachrichten
eines Verbrauchers

 nheuverbundene Verbraucher mussen nicht reabonnieren, sondern
erhalten sofort alle persistent zwischengespeicherten Nachrichten

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

— Google Volley
B bk kbR bR R R R R R ERERERERLRE kbbb EE kbbb bR R bR R EEREREEREREL

MQTT-BEISPIEL

 clientseitige Bibliothek: Eclipse Paho
« MQTT-Broker: Mosquitto

eeeeeeeeeeeeeeee -Architektur

» Beispiel-Client far Android

MQTT-Verbindungsaufbau

protected void onStart() {
super.onStart();
try {
MemoryPersistence persistance = new MemoryPersistence();
mqttClient = new MgttClient(
"tcp://198.51.100.222:1883",
"AndroidTest",
persistance
)3
mqttClient.connect();
mgqttClient.setCallback(this);

}
catch (MgttException e) { ... }

ee

— - Google Volley
E bk EEE R EREEE R R R EREERERE EhbEbEELELE bk b bbb R R EREERERELERE

MQTT-BEISPIEL

MQTT-Ruckruf

public void connectionLost(Throwable cause) {
Log.d("Main", "connection lost: " + cause);
}

public void messageArrived(String topic, MgttMessage message)
throws Exception {

Log.d("Main", "message received for topic: " + topilc
+ ",\r\nmessage: " + message);
}
public void deliveryComplete(IMgttDeliveryToken token) {
Log.d("Main", "deliveryComplete for token: " +

token.getMessageId());
}

ee

— - Google Volley
E bk EEE R EREEE R R R EREERERE EhbEbEELELE bbbk b bEE bR R R R R EERERER

MQTT-BEISPIEL

MQTT-Abonnement

private boolean subscribe(String topic, int gos) {
try {
String topic = "topic/example";
int qos = 1;
mqttClient.subscribe(toptic, qos);

}
catch (MgttException e) { ... }

MQTT-Verdoffentlichung

MgttMessage message = new MqttMessage("Hello World".getBytes());
mqttClient.publish("topic/example"”, message);

ee

— - Google Volley
E bk EEE R EREEE R R R EREERERE EhbEbEELELE bbbk b bR R R R R R EEREREREE

MQTT-BEISPIEL

MQTT-Verbindungsabbau

protected void onStop() {
super.onStop();
if (mgttClient !'= null) {
if (mgqttClient.isConnected()) {

try{
mgttClient.disconnect();

}
catch (MgttException e) { ... }

— Request/Response-Architektur 0 Volle
B bk kbR bR R R R R R ERERERERLRE kbbb EE

bedarfsgetriebene Architekturen
Eh b bR bR R R R R R R R R REREERLRE

VERGLEICH DER INTERAKTIONSSCHEMATA

Request/Response (RPC)

* enge Kopplung (Neubinden schwer)

1:1-Kommunikation

» synchron (Probleme bei Abtrennung)

e vertrautes Interaktionsschema mit
Anfragen und Antworten

e Client und Server werden
synchronisiert

» zusatzlicher Aufwand fur
Zuverlassigkeit (at-most-once)

e Client/Server-Systeme
(Datenverarbeitung mit Ergebnissen)

Publish/Subscribe (Nachrichten)

lose Kopplung (dynamisches
Neubinden)

m:n-Kommunikation
asynchron (Abtrennungsbehandlung)
simples Interaktionsschema

» Basis fur komplexere Interaktionen

« zusatzlicher Aufwand fur komplexe
Interaktionen notwendig

Synchronisierung muss explizit
angestolRen werden

keine Ergebnisse fur Nachrichten

zuverlassiger Nachrichtenaustausch auf
Basis der Nachrichtenschlangen

Lastverteilung, Parallelisierung,
Stapelverarbeitung, Ereignisverteilung

Kommunikation
85
w A X

— Request/Response-Architektur Lo] Volle bedarfsgetriebene Architekturen WS
B bk kbR bR R R R R R ERERERERLRE kbbb EE Eh b bR bR R R R R R R R EREERELE k

BIDIREKTIONALE KOMMUNIKATION — WEBSOCKETS

* persistente, bidirektionale, vollduplex TCP-Verbindung
» arbeitet auf bestehender oder neuer TCP-Verbindung

 initiiert durch WebSocket-Handshake via HTTP

GET /websocket HTTP/1.1

Host example.com

Origin: https://example.com

Connection: Upgrade

Upgrade: websocket

Sec-WebSocket-Key: mx3JhmBHL1EzLApfelhXDw==
Sec-WebSocket-Protocol: chat, superchat
Sec-WebSocket-Version: 13

» bestatigt vom Server, ebenfalls via HTTP

HTTP/1.1 101 Switching Protocols

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept: HSacBirne®OUKAGmm50zZy2HaaBc=
Sec-WebSocket-Protocol: chat

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

— Google Volley WS
B bk kbR bR R R R R R ERERERERLRE kbbb EE Eh b bR bR R R R R R R R EREERELE hk

BIDIREKTIONALE KOMMUNIKATION — WEBSOCKETS

 Erkennung prokurierter Kommunikation
* Websocket selbst erkennt Proxys nicht
* unterliegendes HTTP kann Proxy-Verbindung etablieren (HTTP Tunnel)

e Client

CONNECT proxy.example.com:22 HTTP/1.1
Proxy-Authorization: Basic encoded-credentials

e Server
HTTP/1.1 200 OK

« anschlieRend sendet Client alle Anfragen an Proxy
SSH-2.0-0penSSH_4.3

* Austausch von Klartext oder Text-Blocken Uber etablierte Verbindung

» unverschlusselt (ws://..) oder TLS-verschlusselt (wss://..)
— Upgrade von https://.. auf ws://.. nicht moglich, umgekehrt schon!

* initiale HTTP-Verbindung kann nach WS-Etablierung geschlossen werden

-
Zusammenfassung <<

und Aufgaben ;
¢7
w A X

eeeeeeeeeeeeeeee -Architektur bedarfsgetriebene Architekturen WS Zsfsg

— Google Volley
B bk kbR bR R R R R R ERERERERLRE kbbb EE Eh b bR bR R R R R R R R EREERELE hk &k

ZUSAMMENFASSUNG

 Anfrage/Antwort-Interaktion (Request/Response)
 mobiles RPC-Konzept
« ReST-Dienste
» Beispiel: Google Volley

» Bedarfsgesteuerte Architekturen
» clientseitige Anfragen
» Beispiel: GraphQL

e ereignisgetriebene Kommunikation
 Abonnement-Mechanismus (Publish/Subscribe)
» Ereigniskanal (Event Channel)
* Beispiel: MQTT

» bidirektionale Kommunikation am Beispiel WebSockets

eeeeeeeeeeeeeeee -Architektur Google Volley bedarfsgetriebene Architekturen sfsg

—

AUFGABEN

» Diskutieren Sie mit lhren Kommilitonen, wie Sie einen WWW-Server zu
einem ReST-Dienst erweitern kénnen.
Welche Anpassungen sind an Firewalls notwendig, um ReST nutzen zu
kénnen? Welche Anpassungen an Proxys?

» Googlen Sie nach XMPP und diskutieren Sie mit lhren Kommilitonen
Ahnlichkeiten und Unterschiede zu MQTT!
Was sind sinnvolle Einsatzszenarien fur Message Queues?
Wie wirden Sie eine Chat-Anwendung umsetzen in MQTT? ...in XMPP?
(Vergessen Sie nicht, dass Anwender offline sein konnen, aber trotzdem
Nachrichten zugestellt bekommen wollen!)

» Diskutieren Sie mit lhren Kommilitonen sinnvolle Szenarien fur
WebSocket-Kommunikation.
Wann ist der parallele Einsatz von HTTP und WS sinnvoll?
Wann lohnt es sich, die HTTP-Verbindung zu schlielzen? Wann nicht?

eeeeeeeeeeeeeeee -Architektur Google Volley bedarfsgetriebene Architekturen sfsg

—

REFERENZEN

Bakre, A.V. & Badrinath, B.R. M-RPC: A Remote Procedure Call Service for
Mobile Clients; Mobile Computing and Networking, 1995, 97-110

Fiege, L., Muhl, G., Pietzuch, R.: Distributed Event-Based Systems.
Springer, Berlin, 2006

Google 1/0 2010 — Android REST client applications
http://www.youtube.com/watch?v=xHXn3Kg2IQE

Google (2013): ,Transmitting Network Data Using Volley*“. Android
Developers. Abgerufen am 15.06.2016 von
https://developer.android.com/training/volley.

Google (2016): ,,Material Design*. Abgerufen am 15.06.2016 von
https://www.google.com/design/spec/components/lists.html

Kirkpatrick, Ficus (2013): ,,Google 1/0 2013 - Volley: Easy, Fast
Networking for Android®“. YouTube. Abgerufen am 15.06.2016 von
https://www.youtube.com/watch?v=yhv8I9F44qgo.

MQTT: http://mqtt.org

	Einführung
	Aufbau der Lehrveranstaltung
	Social-Fitness-App – Konnektivitätsherausforderung

	Request/Response-Architektur
	RPC-Prinzip
	RPC in mobilen Umgebungen
	mobiles RPC-Konzept (M-RPC)
	M-RPC
	M-RPC
	Representational State Transfer (ReST)
	Representational State Transfer (ReST)
	ReST – URIs und Methoden
	JavaScript Object Notation (JSON)
	ReST – Implementierungsprinzip
	ReST – Implementierungsprinzip
	Beispiel: Wikipedia-Client
	Android Activity
	Service Helper der Dienstebene
	ReST-Dienst in Android
	ReST-Methoden in Android
	Social-Fitness-App – ReST

	Google Volley
	Google Volley – Haupteigenschaften
	Google Volley – Grundbausteine
	Google Volley – Anfrageinitiierung
	Google Volley – Threading
	Google Volley – Wiederholungsanfragen
	Google Volley – Caching
	Google Volley – Priorisierung
	Google Volley – Anfrageabbruch

	bedarfsgetriebene Architekturen
	bedarfsgetriebene Architekturen [Nolan, Kovas; 2015]
	Social-Fitness-App – bedarfsgetriebener Ansatz
	Beispiel: GraphQL [Facebook; 2012]
	bedarfsgetriebene Architekturen
	Social-Fitness-App – Konnektivitätsherausforderung
	Nachrichtendurchreichung
	Abonnement (Publish/Subscribe)
	Nachrichtenkanal
	mehrschichtige Architektur
	Mobilitätsprobleme
	Architekturen
	Beispiel: Message Queue Telemetry Transport (MQTT)
	MQTT – Dienstqualität (Quality of Service)
	MQTT – Abtrennungsbehandlung
	MQTT-Beispiel
	MQTT-Beispiel
	MQTT-Beispiel
	MQTT-Beispiel
	Vergleich der Interaktionsschemata

	bidirektionale Kommunikation
	bidirektionale Kommunikation – WebSockets
	bidirektionale Kommunikation – WebSockets

	Zusammenfassung und Aufgaben
	Zusammenfassung
	Aufgaben
	Referenzen

